Search Results

You are looking at 11 - 20 of 20 items for :

  • Author or Editor: Paul Dirmeyer x
  • Journal of Climate x
  • Refine by Access: All Content x
Clear All Modify Search
Zhichang Guo
,
Paul A. Dirmeyer
,
Timothy DelSole
, and
Randal D. Koster

Abstract

Total predictability within a chaotic system like the earth’s climate cannot increase over time. However, it can be transferred between subsystems. Predictability of air temperature and precipitation in numerical model forecasts over North America rebounds during late spring to summer because of information stored in the land surface. Specifically, soil moisture anomalies can persist over several months, but this memory cannot affect the atmosphere during early spring because of a lack of coupling between land and atmosphere. Coupling becomes established in late spring, enabling the effects of soil moisture anomalies to increase atmospheric predictability in 2-month forecasts begun as early as 1 May. This predictability is maintained through summer and then drops as coupling fades again in fall. This finding suggests summer forecasts of rainfall and air temperature over parts of North America could be significantly improved with soil moisture observations during spring.

Full access
Timothy DelSole
,
Xiaoqin Yan
,
Paul A. Dirmeyer
,
Mike Fennessy
, and
Eric Altshuler

Abstract

The change in predictability of monthly mean temperature in a future climate is quantified based on the Community Climate System Model, version 4. According to this model, the North Atlantic overtakes the El Niño–Southern Oscillation (ENSO) as the dominant area of seasonal predictability by 2095. This change arises partly because ENSO becomes less variable and partly because the ENSO teleconnection pattern expands into the Atlantic. Over land, the largest change in temperature predictability occurs in the tropics and is predominantly due to a decrease in ENSO variability. The southern peninsula of Africa and northeast South America are predicted to experience significant drying in a future climate, which decreases the effective heat capacity and memory, and hence increases variance independently of ENSO changes. Extratropical land areas experience enhanced precipitation in a future climate, which decreases temperature variance by the same mechanism. Finally, the model predicts that surface temperatures near the poles will become more predictable and less variable in a future climate, primarily because melting sea ice exposes the underlying sea surface temperature, which is more predictable owing to its longer time scale. Some of these results, especially the change in ENSO variance, are known to be model dependent. This paper also advances the use of information theory to quantify predictability, including 1) deriving a quantitative relation between predictability of the first and second kinds; 2) showing how differences in predictability can be decomposed in two dramatically different ways, facilitating physical interpretation; and 3) proposing a sample estimate of mutual information whose significance can be tested using standard techniques.

Full access
Joseph A. Santanello Jr.
,
Joshua Roundy
, and
Paul A. Dirmeyer

Abstract

The coupling of the land with the planetary boundary layer (PBL) on diurnal time scales is critical to regulating the strength of the connection between soil moisture and precipitation. To improve understanding of land–atmosphere (L–A) interactions, recent studies have focused on the development of diagnostics to quantify the strength and accuracy of the land–PBL coupling at the process level. In this paper, the authors apply a suite of local land–atmosphere coupling (LoCo) metrics to modern reanalysis (RA) products and observations during a 17-yr period over the U.S. southern Great Plains. Specifically, a range of diagnostics exploring the links between soil moisture, evaporation, PBL height, temperature, humidity, and precipitation is applied to the summertime monthly mean diurnal cycles of the North American Regional Reanalysis (NARR), Modern-Era Retrospective Analysis for Research and Applications (MERRA), and Climate Forecast System Reanalysis (CFSR). Results show that CFSR is the driest and MERRA the wettest of the three RAs in terms of overall surface–PBL coupling. When compared against observations, CFSR has a significant dry bias that impacts all components of the land–PBL system. CFSR and NARR are more similar in terms of PBL dynamics and response to dry and wet extremes, while MERRA is more constrained in terms of evaporation and PBL variability. Each RA has a unique land–PBL coupling that has implications for downstream impacts on the diurnal cycle of PBL evolution, clouds, convection, and precipitation as well as representation of extremes and drought. As a result, caution should be used when treating RAs as truth in terms of their water and energy cycle processes.

Full access
Vasubandhu Misra
,
Paul A. Dirmeyer
, and
Ben P. Kirtman

Abstract

In this paper multiple atmospheric global circulation model (AGCM) integrations at T42 spectral truncation and prescribed sea surface temperature were used to drive regional spectral model (RSM) simulations at 80-km resolution for the austral summer season (January–February–March). Relative to the AGCM, the RSM improves the ensemble mean simulation of precipitation and the lower- and upper-level tropospheric circulation over both tropical and subtropical South America and the neighboring ocean basins. It is also seen that the RSM exacerbates the dry bias over the northern tip of South America and the Nordeste region, and perpetuates the erroneous split intertropical convergence zone (ITCZ) over both the Pacific and Atlantic Ocean basins from the AGCM. The RSM at 80-km horizontal resolution is able to reasonably resolve the Altiplano plateau. This led to an improvement in the mean precipitation over the plateau. The improved resolution orography in the RSM did not substantially change the predictability of the precipitation, surface fluxes, or upper- and lower-level winds in the vicinity of the Andes Mountains from the AGCM. In spite of identical convective and land surface parameterization schemes, the diagnostic quantities, such as precipitation and surface fluxes, show significant differences in the intramodel variability over oceans and certain parts of the Amazon River basin (ARB). However, the prognostic variables of the models exhibit relatively similar model noise structures and magnitude. This suggests that the model physics are in large part responsible for the divergence of the solutions in the two models. However, the surface temperature and fluxes from the land surface scheme of the model [Simplified Simple Biosphere scheme (SSiB)] display comparable intramodel variability, except over certain parts of ARB in the two models. This suggests a certain resilience of predictability in SSiB (over the chosen domain of study) to variations in horizontal resolution. It is seen in this study that the summer precipitation over tropical and subtropical South America is highly unpredictable in both models.

Full access
Paul A. Dirmeyer
,
Michael J. Fennessy
, and
L. Marx

Abstract

Ensemble integrations of three general circulation models (Center for Ocean–Land–Atmosphere Studies, NCAR, and NCEP) have been performed over five different boreal summer seasons (June through September of 1986–88 and 1993–94) with prescribed observed sea surface temperature to assess the predictability of seasonal climate during the boreal summer. Beyond some inconsistent initialization of soil wetness among the models, there is no land surface contribution to predictability that can be assessed. The models show a rapid degradation of skill in global terrestrial surface temperature after the first month, and no skill in precipitation over land. Potential predictability is assessed by examining in tandem the models' skill as measured by their anomaly correlation coefficients, and the models' signal-to-noise ratio (essentially interannual versus intraensemble variance) as a measure of confidence in the results. Collocation of skill in anomaly simulation and a robust signal is a strong indicator of potential predictability. Predictability of interannual climate variations is found to be low outside the deep Tropics, and nil over land. With only SST as a driving boundary condition, the poor performance of these models during summer may indicate that one must turn to the land surface in order to harvest potential predictability.

Full access
Paul A. Dirmeyer
,
Yan Jin
,
Bohar Singh
, and
Xiaoqin Yan

Abstract

Long-term changes in land–atmosphere interactions during spring and summer are examined over North America. A suite of models from phase 5 of the Coupled Model Intercomparison Project simulating preindustrial, historical, and severe future climate change scenarios are examined for changes in soil moisture, surface fluxes, atmospheric boundary layer characteristics, and metrics of land–atmosphere coupling.

Simulations of changes from preindustrial to modern conditions show warming brings stronger surface fluxes at high latitudes, while subtropical regions of North America respond with drier conditions. There is a clear anthropogenic aerosol response in midlatitudes that reduces surface radiation and heat fluxes, leading to shallower boundary layers and lower cloud base. Over the Great Plains, the signal does not reflect a purely radiatively forced response, showing evidence that the expansion of agriculture may have offset the aerosol impacts on the surface energy and water cycle.

Future changes show soils are projected to dry across North America, even though precipitation increases north of a line that retreats poleward from spring to summer. Latent heat flux also has a north–south dipole of change, increasing north and decreasing south of a line that also moves northward with the changing season. Metrics of land–atmosphere feedback increase over most of the continent but are strongest where latent heat flux increases in the same location and season where precipitation decreases. Combined with broadly elevated cloud bases and deeper boundary layers, land–atmosphere interactions are projected to become more important in the future with possible consequences for seasonal climate prediction.

Full access
Randal D. Koster
,
Zhichang Guo
,
Rongqian Yang
,
Paul A. Dirmeyer
,
Kenneth Mitchell
, and
Michael J. Puma

Abstract

The soil moisture state simulated by a land surface model is a highly model-dependent quantity, meaning that the direct transfer of one model’s soil moisture into another can lead to a fundamental, and potentially detrimental, inconsistency. This is first illustrated with two recent examples, one from the National Centers for Environmental Prediction (NCEP) involving seasonal precipitation forecasting and another from the realm of ecological modeling. The issue is then further addressed through a quantitative analysis of soil moisture contents produced as part of a global offline simulation experiment in which a number of land surface models were driven with the same atmospheric forcing fields. These latter comparisons clearly demonstrate, on a global scale, the degree to which model-simulated soil moisture variables differ from each other and that these differences extend beyond those associated with model-specific layer thicknesses or soil texture. The offline comparisons also show, however, that once the climatological statistics of each model’s soil moisture variable are accounted for (here, through a simple scaling using the first two moments), the different land models tend to produce very similar information on temporal soil moisture variability in most parts of the world. This common information can perhaps be used as the basis for successful mappings between the soil moisture variables in different land models.

Full access
Sanjiv Kumar
,
James Kinter III
,
Paul A. Dirmeyer
,
Zaitao Pan
, and
Jennifer Adams

Abstract

The ability of phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models to simulate the twentieth-century “warming hole” over North America is explored, along with the warming hole’s relationship with natural climate variability. Twenty-first-century warming hole projections are also examined for two future emission scenarios, the 8.5 and 4.5 W m−2 representative concentration pathways (RCP8.5 and RCP4.5). Simulations from 22 CMIP5 climate models were analyzed, including all their ensemble members, for a total of 192 climate realizations. A nonparametric trend detection method was employed, and an alternative perspective emphasizing trend variability. Observations show multidecadal variability in the sign and magnitude of the trend, where the twentieth-century temperature trend over the eastern United States appears to be associated with low-frequency (multidecadal) variability in the North Atlantic temperatures. Most CMIP5 climate models simulate significantly lower “relative power” in the North Atlantic multidecadal oscillations than observed. Models that have relatively higher skill in simulating the North Atlantic multidecadal oscillation also are more likely to reproduce the warming hole. It was also found that the trend variability envelope simulated by multiple CMIP5 climate models brackets the observed warming hole. Based on the multimodel analysis, it is found that in the twenty-first-century climate simulations the presence or absence of the warming hole depends on future emission scenarios; the RCP8.5 scenario indicates a disappearance of the warming hole, whereas the RCP4.5 scenario shows some chance (10%–20%) of the warming hole’s reappearance in the latter half of the twenty-first century, consistent with CO2 stabilization.

Full access
Bohua Huang
,
Chul-Su Shin
,
J. Shukla
,
Lawrence Marx
,
Magdalena A. Balmaseda
,
Subhadeep Halder
,
Paul Dirmeyer
, and
James L. Kinter III

Abstract

A set of ensemble seasonal reforecasts for 1958–2014 is conducted using the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2. In comparison with other current reforecasts, this dataset extends the seasonal reforecasts to the 1960s–70s. Direct comparison of the predictability of the ENSO events occurring during the 1960s–70s with the more widely studied ENSO events since then demonstrates the seasonal forecast system’s capability in different phases of multidecadal variability and degrees of global climate change. A major concern for a long reforecast is whether the seasonal reforecasts before 1979 provide useful skill when observations, particularly of the ocean, were sparser. This study demonstrates that, although the reforecasts have lower skill in predicting SST anomalies in the North Pacific and North Atlantic before 1979, the prediction skill of the onset and development of ENSO events in 1958–78 is comparable to that for 1979–2014. In particular, the ENSO predictions initialized in April during 1958–78 show higher skill in the summer. However, the skill of the earlier predictions declines faster in the ENSO decaying phase, because the reforecasts initialized after boreal summer persistently predict lingering wind and SST anomalies over the eastern equatorial Pacific during such events. Reforecasts initialized in boreal fall overestimate the peak SST anomalies of strong El Niño events since the 1980s. Both phenomena imply that the model’s air–sea feedback is overly active in the eastern Pacific before ENSO event termination. Whether these differences are due to changes in the observing system or are associated with flow-dependent predictability remains an open question.

Full access
Paul A. Dirmeyer
,
Sanjiv Kumar
,
Michael J. Fennessy
,
Eric L. Altshuler
,
Timothy DelSole
,
Zhichang Guo
,
Benjamin A. Cash
, and
David Straus

Abstract

The climate system model of the National Center for Atmospheric Research is used to examine the predictability arising from the land surface initialization of seasonal climate ensemble forecasts in current, preindustrial, and projected future settings. Predictability is defined in terms of the model's ability to predict its own interannual variability. Predictability from the land surface in this model is relatively weak compared to estimates from other climate models but has much of the same spatial and temporal structure found in previous studies. Several factors appear to contribute to the weakness, including a low correlation between surface fluxes and subsurface soil moisture, less soil moisture memory (lagged autocorrelation) than other models or observations, and relative insensitivity of the atmospheric boundary layer to surface flux variations. Furthermore, subseasonal cyclical behavior in plant phenology for tropical grasses introduces spurious unrealistic predictability at low latitudes during dry seasons. Despite these shortcomings, intriguing changes in predictability are found. Areas of historical land use change appear to have experienced changes in predictability, particularly where agriculture expanded dramatically into the Great Plains of North America, increasing land-driven predictability there. In a warming future climate, land–atmosphere coupling strength generally increases, but added predictability does not always follow; many other factors modulate land-driven predictability.

Full access