Search Results

You are looking at 11 - 20 of 46 items for

  • Author or Editor: Pierre Kirstetter x
  • Refine by Access: All Content x
Clear All Modify Search
Yagmur Derin
,
Pierre-Emmanuel Kirstetter
, and
Jonathan J. Gourley

Abstract

As a fundamental water flux, quantitative understanding of precipitation is important to understand and manage water systems under a changing climate, especially in transition regions such as the coastal interface between land and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-resolution, high-quality Ground Validation Multi-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference. The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by morphing ([20%–34%]), morphing+IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formation mechanisms play an important role, especially in the West Coast where orographic processes challenge detection. Further, precipitation typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

Full access
Noah S. Brauer
,
Jeffrey B. Basara
,
Cameron R. Homeyer
,
Greg M. McFarquhar
, and
Pierre E. Kirstetter

Abstract

Hurricane Harvey produced unprecedented widespread rainfall amounts over 1000 mm in portions of southeast Texas, including Houston, from 26 to 31 August 2017. The highly efficient and prolonged warm rain processes associated with Harvey played a key role in the catastrophic flooding that occurred throughout the region. Precipitation efficiency (PE) is widely referred to in the scientific literature when discussing excessive precipitation events that lead to catastrophic flash flooding, but has yet to be explored or quantified in tropical cyclones coincident with polarimetric radar observations. With the introduction of dual-polarization radar to the NEXRAD WSR-88D network, polarimetric radar variables such as Z H , Z DR, and K DP can be used to gain insight into the precipitation processes that contribute to enhanced PE. It was found that 6-h mean values of Z H between 35 and 45 dBZ, Z DR between 1 and 1.5 dB, and K DP greater than 1° km−1 were collocated with the regions of PE greater than 100% between 27 and 29 August. Additionally, supercell thunderstorms embedded in the outer bands of Harvey were identified via 3–6 km Multi-Radar Multi-Senor (MRMS) rotation tracks and were collocated with swaths of enhanced positive Z H , Z DR, and K DP. A polarimetric rainfall relationship estimates that 1-h mean rainfall rates in these supercells were as high as 85 mm h−1 and made a significant contribution to the excessive precipitation event that occurred over the region.

Free access
Manabendra Saharia
,
Pierre-Emmanuel Kirstetter
,
Humberto Vergara
,
Jonathan J. Gourley
,
Yang Hong
, and
Marine Giroud

Abstract

Flash floods, a subset of floods, are a particularly damaging natural hazard worldwide because of their multidisciplinary nature, difficulty in forecasting, and fast onset that limits emergency responses. In this study, a new variable called “flashiness” is introduced as a measure of flood severity. This work utilizes a representative and long archive of flooding events spanning 78 years to map flash flood severity, as quantified by the flashiness variable. Flood severity is then modeled as a function of a large number of geomorphological and climatological variables, which is then used to extend and regionalize the flashiness variable from gauged basins to a high-resolution grid covering the conterminous United States. Six flash flood “hotspots” are identified and additional analysis is presented on the seasonality of flash flooding. The findings from this study are then compared to other related datasets in the United States, including National Weather Service storm reports and a historical flood fatalities database.

Full access
Zeinab Takbiri
,
Ardeshir Ebtehaj
,
Efi Foufoula-Georgiou
,
Pierre-Emmanuel Kirstetter
, and
F. Joseph Turk

Abstract

Monitoring changes of precipitation phase from space is important for understanding the mass balance of Earth’s cryosphere in a changing climate. This paper examines a Bayesian nearest neighbor approach for prognostic detection of precipitation and its phase using passive microwave observations from the Global Precipitation Measurement (GPM) satellite. The method uses the weighted Euclidean distance metric to search through an a priori database populated with coincident GPM radiometer and radar observations as well as ancillary snow-cover data. The algorithm performance is evaluated using data from GPM official precipitation products, ground-based radars, and high-fidelity simulations from the Weather Research and Forecasting Model. Using the presented approach, we demonstrate that the hit probability of terrestrial precipitation detection can reach to 0.80, while the probability of false alarm remains below 0.11. The algorithm demonstrates higher skill in detecting snowfall than rainfall, on average by 10%. In particular, the probability of precipitation detection and its solid phase increases by 11% and 8%, over dry snow cover, when compared to other surface types. The main reason is found to be related to the ability of the algorithm in capturing the signal of increased liquid water content in snowy clouds over radiometrically cold snow-covered surfaces.

Full access
Yixin Wen
,
Pierre Kirstetter
,
J. J. Gourley
,
Yang Hong
,
Ali Behrangi
, and
Zachary Flamig

Abstract

Snow is important to water resources and is of critical importance to society. Ground-weather-radar-based snowfall observations have been highly desirable for large-scale weather monitoring and water resources applications. This study conducts an evaluation of the Multi-Radar Multi-Sensor (MRMS) quantitative estimates of snow rate using the Snowpack Telemetry (SNOTEL) daily snow water equivalent (SWE) datasets. A detectability evaluation shows that MRMS is limited in detecting very light snow (daily snow accumulation <5 mm) because of the quality control module in MRMS filtering out weak signals (<5 dBZ). For daily snow accumulation greater than 10 mm, MRMS has good detectability. The quantitative comparisons reveal a bias of −77.37% between MRMS and SNOTEL. A majority of the underestimation bias occurs in relatively warm conditions with surface temperatures ranging from −10° to 0°C. A constant reflectivity–SWE intensity relationship does not capture the snow mass flux increase associated with denser snow particles at these relatively warm temperatures. There is no clear dependence of the bias on radar beam height. The findings in this study indicate that further improvement in radar snowfall products might occur by deriving appropriate reflectivity–SWE relationships considering the degree of riming and snowflake size.

Full access
Guy Delrieu
,
Brice Boudevillain
,
John Nicol
,
Benoît Chapon
,
Pierre-Emmanuel Kirstetter
,
Hervé Andrieu
, and
D. Faure

Abstract

The Bollène-2002 Experiment was aimed at developing the use of a radar volume-scanning strategy for conducting radar rainfall estimations in the mountainous regions of France. A developmental radar processing system, called Traitements Régionalisés et Adaptatifs de Données Radar pour l’Hydrologie (Regionalized and Adaptive Radar Data Processing for Hydrological Applications), has been built and several algorithms were specifically produced as part of this project. These algorithms include 1) a clutter identification technique based on the pulse-to-pulse variability of reflectivity Z for noncoherent radar, 2) a coupled procedure for determining a rain partition between convective and widespread rainfall R and the associated normalized vertical profiles of reflectivity, and 3) a method for calculating reflectivity at ground level from reflectivities measured aloft. Several radar processing strategies, including nonadaptive, time-adaptive, and space–time-adaptive variants, have been implemented to assess the performance of these new algorithms. Reference rainfall data were derived from a careful analysis of rain gauge datasets furnished by the Cévennes–Vivarais Mediterranean Hydrometeorological Observatory. The assessment criteria for five intense and long-lasting Mediterranean rain events have proven that good quantitative precipitation estimates can be obtained from radar data alone within 100-km range by using well-sited, well-maintained radar systems and sophisticated, physically based data-processing systems. The basic requirements entail performing accurate electronic calibration and stability verification, determining the radar detection domain, achieving efficient clutter elimination, and capturing the vertical structure(s) of reflectivity for the target event. Radar performance was shown to depend on type of rainfall, with better results obtained with deep convective rain systems (Nash coefficients of roughly 0.90 for point radar–rain gauge comparisons at the event time step), as opposed to shallow convective and frontal rain systems (Nash coefficients in the 0.6–0.8 range). In comparison with time-adaptive strategies, the space–time-adaptive strategy yields a very significant reduction in the radar–rain gauge bias while the level of scatter remains basically unchanged. Because the Z–R relationships have not been optimized in this study, results are attributed to an improved processing of spatial variations in the vertical profile of reflectivity. The two main recommendations for future work consist of adapting the rain separation method for radar network operations and documenting Z–R relationships conditional on rainfall type.

Full access
Rémy Roca
,
Philippe Chambon
,
Isabelle Jobard
,
Pierre-Emmanuel Kirstetter
,
Marielle Gosset
, and
Jean Claude Bergès

Abstract

Monsoon rainfall is central to the climate of West Africa, and understanding its variability is a challenge for which satellite rainfall products could be well suited to contribute to. Their quality in this region has received less attention than elsewhere. The focus is set on the scales associated with atmospheric variability, and a meteorological benchmark is set up with ground-based observations from the African Monsoon Multidisciplinary Analysis (AMMA) program. The investigation is performed at various scales of accumulation using four gauge networks. The seasonal cycle is analyzed using 10-day-averaged products, the synoptic-scale variability is analyzed using daily means, and the diurnal cycle of rainfall is analyzed at the seasonal scale using a composite and at the diurnal scale using 3-hourly accumulations. A novel methodology is introduced that accounts for the errors associated with the areal–time rainfall averages. The errors from both satellite and ground rainfall data are computed using dedicated techniques that come down to an estimation of the sampling errors associated to these measurements. The results show that the new generation of combined infrared–microwave (IR–MW) satellite products is describing the rain variability similarly to ground measurements. At the 10-day scale, all products reveal high regional and seasonal skills. The day-to-day comparison indicates that some products perform better than others, whereas all of them exhibit high skills when the spectral band of African easterly waves is considered. The seasonal variability of the diurnal scale as well as its relative daily importance is only captured by some products. Plans for future extensive intercomparison exercises are briefly discussed.

Full access
Pierre-Emmanuel Kirstetter
,
Tian-You Yu
,
Robert Palmer
,
David Parsons
,
Hirohiko Ishikawa
, and
Jessica M. Erlingis
Full access
James M. Kurdzo
,
Emily F. Joback
,
Pierre-Emmanuel Kirstetter
, and
John Y. N. Cho

Abstract

The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on network density, antenna aperture, and polarimetric bias. Thousands of cases from the warm-season months of May–August 2015–17 are processed using both the specific attenuation [R(A)] and reflectivity–differential reflectivity [R(Z, Z DR)] QPE methods and are compared with Automated Surface Observing System (ASOS) rain gauge data. QPE errors are quantified on the basis of beam height, cross-radial resolution, added polarimetric bias, and observed rainfall rate. The collected data are used to construct a support vector machine regression model that is applied to the current WSR-88D network for holistic error quantification. An analysis of the effects of polarimetric bias on flash-flood rainfall rates is presented. Rainfall rates that are based on 2-yr/1-h return rates are used for a contiguous-U.S.-wide analysis of QPE errors in extreme rainfall situations. These errors are then requantified using previously proposed network design scenarios with additional radars that provide enhanced estimate capabilities. Last, a gap-filling scenario utilizing the QPE error model, flash-flood rainfall rates, population density, and potential additional WSR-88D sites is presented, exposing the highest-benefit coverage holes in augmenting the WSR-88D network (or a future network) relative to QPE performance.

Free access
Pierre-Emmanuel Kirstetter
,
Y. Hong
,
J. J. Gourley
,
M. Schwaller
,
W. Petersen
, and
J. Zhang

Abstract

Characterization of the error associated with satellite rainfall estimates is a necessary component of deterministic and probabilistic frameworks involving spaceborne passive and active microwave measurements for applications ranging from water budget studies to forecasting natural hazards related to extreme rainfall events. The authors focus here on the relative error structure of Tropical Rainfall Measurement Mission (TRMM) precipitation radar (PR) quantitative precipitation estimation (QPE) at the ground by comparison of 2A25 products with reference values derived from NOAA/NSSL’s ground radar–based National Mosaic and QPE system (NMQ/Q2). The primary contribution of this study is to compare the new 2A25, version 7 (V7), products that were recently released as a replacement of version 6 (V6). Moreover, the authors supply uncertainty estimates of the rainfall products so that they may be used in a quantitative manner for applications like hydrologic modeling. This new version is considered superior over land areas and will likely be the final version for TRMM PR rainfall estimates. Several aspects of the two versions are compared and quantified, including rainfall rate distributions, systematic biases, and random errors. All analyses indicate that V7 is in closer agreement with the reference rainfall compared to V6.

Full access