Search Results

You are looking at 11 - 18 of 18 items for

  • Author or Editor: Qiang Zhao x
  • Refine by Access: All Content x
Clear All Modify Search
Shunlin Liang
,
Jie Cheng
,
Kun Jia
,
Bo Jiang
,
Qiang Liu
,
Zhiqiang Xiao
,
Yunjun Yao
,
Wenping Yuan
,
Xiaotong Zhang
,
Xiang Zhao
, and
Ji Zhou

Abstract:

The Global Land Surface Satellite (GLASS) product suite currently contains 12 products, including leaf area index, fraction of absorbed photosynthetically active radiation, fraction of green vegetation coverage, gross primary production, broadband albedo, broadband longwave emissivity, downward shortwave radiation and photosynthetically active radiation, land surface temperature, downward and upwelling thermal radiation, all-wave net radiation, and evapotranspiration. These products are generated from the Advanced Very High Resolution Radiometer and Moderate Resolution Imaging Spectroradiometer satellite data. Their unique features include long-term temporal coverage (many from 1981 to the present), high spatial resolutions of the surface radiation products (1 km and 0.05°), spatial continuities without missing pixels, and high quality and accuracy based on extensive validation using in situ measurements and intercomparisons with other existing satellite products. Moreover, the GLASS products are based on robust algorithms that have been published in peer-reviewed literature. Herein, we provide an overview of the algorithm development, product characteristics, and some preliminary applications of these products. We also describe the next steps, such as improving the existing GLASS products, generating more climate data records (CDRs), broadening product dissemination, and fostering their wider utilization. The GLASS products are freely available to the public.

Full access
Hua Zheng
,
Xiao-Hua Zhu
,
Chuanzheng Zhang
,
Ruixiang Zhao
,
Ze-Nan Zhu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
, and
Fei Yu

Abstract

South China Sea (SCS) abyssal circulation largely contributes to water renewal, energy budget, and sedimentary processes in the deep ocean. The three-dimensional abyssal circulation west of the Luzon Strait (LS) in the northern SCS was investigated using an array comprising 27 current- and pressure-recording inverted echo sounders. Over 400 days of measurements from June 2018 to July 2019 showed a narrow and strong (∼70 km, ∼2.3 cm s−1 at 2500 dbar) northward current near the steep eastern boundary, while a wide and weak (∼180 km, ∼1.5 cm s−1 at 2500 dbar) southwestward current lies along the subdued western boundary. The circulation showed conspicuous cyclonic patterns with a volume transport of ∼1.21 ± 0.93 Sv (1 Sv ≡ 106 m3 s−1) and ∼1.59 ± 0.95 Sv below 2500 dbar along the eastern and western boundaries, respectively. The current near the LS was strong in late autumn and early winter but weak in late winter and spring, following the seasonal variation of LS deep-water overflow. However, the southwestward current in the interior SCS was stronger in summer and early autumn but weaker in late winter and early spring. The different seasonal patterns identified near the LS and the interior SCS are attributed to the propagation of seasonal variation. The weak current along the western boundary in August 2018 and February 2019 was dominated by LS deep-water overflow with a time lag of ∼7.5 months. Although eddies in the upper ocean may also contribute to such variation through pressure work, the effect is minor.

Significance Statement

Cyclonic circulation in the deep South China Sea (SCS) largely contributes to water renewal, energy budget, and sedimentary processes and influences the transport of dissolved elements, minerals, and pollutants. As an important part of the SCS throughflow, an in-depth analysis of the SCS abyssal circulation may also contribute to understanding Indonesian Throughflow and global climate change. The three-dimensional abyssal circulation west of the Luzon Strait was investigated using large-scale data from June 2018 to July 2019, which provided unprecedented coverage of abyssal circulation in the northeast SCS. The study provides important observational evidence for the existence of SCS abyssal cyclonic circulation. Detailed spatiotemporal structure of abyssal circulation and its variations are presented, and related dynamic processes are discussed.

Free access
Hua Zheng
,
Xiao-Hua Zhu
,
Ruixiang Zhao
,
Juntian Chen
,
Min Wang
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
,
Fei Yu
, and
Jae-Hun Park

Abstract

Typhoon Mangkhut crossed the northeastern South China Sea (SCS) in September 2018 and induced energetic near-inertial waves (NIWs) that were captured by an array of 39 current- and pressure-recording inverted echo sounders and two tall moorings with acoustic Doppler current profilers and current meter sensors. The array extended from west of the Luzon Strait to the interior SCS, with the path of the typhoon cutting through the array. NIWs in the interior SCS had lower frequency than those near the Luzon Strait. After the typhoon crossed the SCS, Mangkhut-induced near-inertial currents in the upper ocean reached over 50 cm s−1. NIWs traveled southward for hundreds of kilometers, dominated by modes 2 and 3 in the upper and deep ocean. The horizontal phase speeds of mode 2 were ∼3.9 and ∼2.5 m s−1 north and south of the typhoon’s track, respectively, while those of mode 3 were ∼2.1 and ∼1.7 m s−1, respectively. Mode 5 was only identified in the north with a smaller phase speed. Owing to different vertical group velocities, the energy of mode-2 NIWs reached the deep ocean in 20 days, whereas the higher-mode NIWs required more time to transfer energy to the bottom. NIWs in the north were trapped and carried by a westward-propagating anticyclonic eddy, which enhanced the near-inertial kinetic energy at ∼300 m and lengthened the duration of energetic NIWs observed in the north.

Significance Statement

Near-inertial waves (NIWs), generally caused by wind (e.g., typhoons and monsoons) in the upper ocean, are one of the two types of energetic internal waves widely observed in the ocean. After their generation near the surface, energetic NIWs propagate downward and equatorward, thereby significantly contributing to turbulent mixing in the upper and deep ocean and acting as a mechanism of energy transfer from the surface to the deep ocean. The unprecedented NIW observations in the South China Sea describe the generation, propagation, and vertical normal modes of typhoon-induced NIWs in the upper and deep oceans, and contribute to knowledge regarding the dynamic responses of abyssal processes to typhoons.

Free access
Ruixiang Zhao
,
Xiao-Hua Zhu
,
Chuanzheng Zhang
,
Hua Zheng
,
Ze-Nan Zhu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
, and
Fei Yu

Abstract

The Kuroshio intrusion into the South China Sea (SCS) in summer is weak and has rarely been reported by in situ observations. Here, we describe a new form of Kuroshio water intrusion that is strongest during the summer, the North Luzon Warm Eddy (NLWE), which is an anticyclonic eddy originating north of Luzon Island. From early July to mid-September 2018, two NLWEs moving northwestward were captured by a mooring array consisting of 27 current- and pressure-recording inverted echo sounders (CPIESs). The three-dimensional CPIES estimates reveal that the NLWEs carried large amounts of saline Kuroshio waters (S > 34.7 psu) in the subsurface, which was also evidenced by Argo float profiles. The Kuroshio intrusion was confined to waters shallower than the 14.8°C isotherm. Historical data for NLWEs suggest that they occur mostly during the summer but are absent between November and March, which is attributed to seasonal wind stress curl (WSC). However, because the seasonal signal of WSC during summer is small, intraseasonal WSC is directly responsible for the generation of NLWEs.

Significance Statement

This paper describes a new type of Kuroshio water intrusion into the South China Sea (SCS)—the North Luzon Warm Eddy (NLWE), which is an anticyclonic eddy generated north of Luzon Island. The eddy mostly occurs during summer when the Kuroshio intrusion is commonly considered the weakest. From observations of a large CPIES array, we provide a cradle-to-grave picture of the NLWE. NLWEs are estimated to contribute almost half of the westward Luzon Strait transport during the summer and, as such, play an important role in the seasonal stratification and circulation in the northeastern SCS.

Free access
Hua Zheng
,
Xiao-Hua Zhu
,
Juntian Chen
,
Min Wang
,
Ruixiang Zhao
,
Chuanzheng Zhang
,
Ze-Nan Zhu
,
Qiang Ren
,
Yansong Liu
,
Feng Nan
, and
Fei Yu

Abstract

Topographic Rossby waves (TRWs) play an important role in deep-ocean dynamics and abyssal intraseasonal variations. Observational records from 15 current- and pressure-recording inverted echo sounders (CPIESs) and two moorings deployed in the northern Manila Trench (MT), South China Sea (SCS), for over 400 days were utilized to analyze the widely existing near-21-day bottom-trapped TRWs in the trench. The TRWs were generally generated in winter and summer, dominated by perturbations in the upper ocean. Kuroshio intrusion and its related variabilities contributed to the perturbations in winter, whereas the perturbations generated north of Luzon Island dominated in summer. Eddies north of Luzon propagated northwestward in the summer of 2018; however, these eddies caused the Kuroshio meanderings in the Luzon Strait (LS) in the summer of 2019. The variations in the Kuroshio path and the Kuroshio-related eddies induced TRWs in the deep ocean in regions with steep topography. However, the spatiotemporal distributions of TRWs were complex owing to the propagation of the waves. Some cases of TRWs showed no relation to the local upper-layer perturbations but propagated from adjacent regions. Some of these TRWs were induced by perturbations in the upper ocean in adjacent regions, and propagated anticlockwise in the MT with shallow water to their right, while others may be related to the intraseasonal variations in deep-water overflow in the LS and propagated northward. This study suggests that the Kuroshio and Kuroshio-related eddies significantly contribute to the dynamic processes associated with intraseasonal variations in the deep SCS through the generation of TRWs.

Significance Statement

Topographic Rossby waves (TRWs) are fluctuations generated when water columns travel across sloping topography under potential vorticity conservation. Based on observations of 15 current- and pressure-recording inverted echo sounders (CPIESs) and two moorings in the northern Manila Trench (MT) in the South China Sea (SCS), TRWs with periods of approximately 21 days were observed and analyzed. This study describes the generation, propagation, and spatiotemporal distribution of TRWs west of the LS and confirms that regional Kuroshio meanderings and upper eddies play important roles in the dynamic processes associated with intraseasonal variations in the deep SCS; the study may thus contribute to knowledge on the dynamic response of the abyssal current to mesoscale perturbations in the upper ocean.

Free access
Xuhui Lee
,
Zhiqiu Gao
,
Chaolin Zhang
,
Fei Chen
,
Yinqiao Hu
,
Weimei Jiang
,
Shuhua Liu
,
Longhua Lu
,
Jielun Sun
,
Jiemin Wang
,
Zhihua Zeng
,
Qiang Zhang
,
Ming Zhao
, and
Mingyu Zhou
Full access
Ping Zhao
,
Xiangde Xu
,
Fei Chen
,
Xueliang Guo
,
Xiangdong Zheng
,
Liping Liu
,
Yang Hong
,
Yueqing Li
,
Zuo La
,
Hao Peng
,
Linzhi Zhong
,
Yaoming Ma
,
Shihao Tang
,
Yimin Liu
,
Huizhi Liu
,
Yaohui Li
,
Qiang Zhang
,
Zeyong Hu
,
Jihua Sun
,
Shengjun Zhang
,
Lixin Dong
,
Hezhen Zhang
,
Yang Zhao
,
Xiaolu Yan
,
An Xiao
,
Wei Wan
,
Yu Liu
,
Junming Chen
,
Ge Liu
,
Yangzong Zhaxi
, and
Xiuji Zhou

Abstract

This paper presents the background, scientific objectives, experimental design, and preliminary achievements of the Third Tibetan Plateau (TP) Atmospheric Scientific Experiment (TIPEX-III) for 8–10 years. It began in 2013 and has expanded plateau-scale observation networks by adding observation stations in data-scarce areas; executed integrated observation missions for the land surface, planetary boundary layer, cloud–precipitation, and troposphere–stratosphere exchange processes by coordinating ground-based, air-based, and satellite facilities; and achieved noticeable progress in data applications. A new estimation gives a smaller bulk transfer coefficient of surface sensible heat over the TP, which results in a reduction of the possibly overestimated heat intensity found in previous studies. Summer cloud–precipitation microphysical characteristics and cloud radiative effects over the TP are distinguished from those over the downstream plains. Warm rain processes play important roles in the development of cloud and precipitation over the TP. The lower-tropospheric ozone maximum over the northeastern TP is attributed to the regional photochemistry and long-range ozone transports, and the heterogeneous chemical processes of depleting ozone near the tropopause might not be a dominant mechanism for the summer upper-tropospheric–lower-stratospheric ozone valley over the southeastern TP. The TP thermodynamic function not only affects the local atmospheric water maintenance and the downstream precipitation and haze events but also modifies extratropical atmospheric teleconnections like the Asia–Pacific Oscillation, subtropical anticyclones over the North Pacific and Atlantic, and temperature and precipitation over Africa, Asia, and North America. These findings provide new insights into understanding land–atmosphere coupled processes over the TP and their effects, improving model parameterization schemes, and enhancing weather and climate forecast skills.

Open access
Yaohui Li
,
Xing Yuan
,
Hongsheng Zhang
,
Runyuan Wang
,
Chenghai Wang
,
Xianhong Meng
,
Zhiqiang Zhang
,
Shanshan Wang
,
Yang Yang
,
Bo Han
,
Kai Zhang
,
Xiaoping Wang
,
Hong Zhao
,
Guangsheng Zhou
,
Qiang Zhang
,
Qing He
,
Ni Guo
,
Wei Hou
,
Cunjie Zhang
,
Guoju Xiao
,
Xuying Sun
,
Ping Yue
,
Sha Sha
,
Heling Wang
,
Tiejun Zhang
,
Jinsong Wang
, and
Yubi Yao

Abstract

A major experimental drought research project entitled “Mechanisms and Early Warning of Drought Disasters over Northern China” (DroughtEX_China) was launched by the Ministry of Science and Technology of China in 2015. The objective of DroughtEX_China is to investigate drought disaster mechanisms and provide early-warning information via multisource observations and multiscale modeling. Since the implementation of DroughtEX_China, a comprehensive V-shape in situ observation network has been established to integrate different observational experiment systems for different landscapes, including crops in northern China. In this article, we introduce the experimental area, observational network configuration, ground- and air-based observing/testing facilities, implementation scheme, and data management procedures and sharing policy. The preliminary observational and numerical experimental results show that the following are important processes for understanding and modeling drought disasters over arid and semiarid regions: 1) the soil water vapor–heat interactions that affect surface soil moisture variability, 2) the effect of intermittent turbulence on boundary layer energy exchange, 3) the drought–albedo feedback, and 4) the transition from stomatal to nonstomatal control of plant photosynthesis with increasing drought severity. A prototype of a drought monitoring and forecasting system developed from coupled hydroclimate prediction models and an integrated multisource drought information platform is also briefly introduced. DroughtEX_China lasted for four years (i.e., 2015–18) and its implementation now provides regional drought monitoring and forecasting, risk assessment information, and a multisource data-sharing platform for drought adaptation over northern China, contributing to the global drought information system (GDIS).

Full access