Search Results
You are looking at 11 - 20 of 20 items for
- Author or Editor: Qinghua Ding x
- Refine by Access: All Content x
Abstract
Maximum covariance analysis is performed on the fields of boreal summer, tropical rainfall, and Northern Hemisphere (NH) 200-hPa height for the 62-yr period of record of 1948–2009. The leading mode, which appears preferentially in summers preceding the peak phases of the El Niño–Southern Oscillation (ENSO) cycle, involves a circumglobal teleconnection (CGT) pattern in the NH extratropical 200-hPa height field observed in association with Indian monsoon rainfall anomalies. The second mode, which tends to occur in summers following ENSO peak phases, involves a western Pacific–North America (WPNA) teleconnection pattern in the height field observed in association with western North Pacific summer monsoon rainfall anomalies. The CGT pattern is primarily a zonally oriented wave train along the westerly waveguide, while the WPNA pattern is a wave train emanating from the western Pacific monsoon trough and following a great circle. The CGT is accompanied by a pronounced tropical–extratropical seesaw in the zonally symmetric geopotential height and temperature fields, and the WPNA is observed in association with hemispherically uniform anomalies. These ENSO-related features modulate surface air temperature in both the tropics and extratropics. ENSO also affects the wave structure of the CGT and WPNA indirectly, by modulating the strengths of the Indian and western North Pacific monsoons. Linear barotropic mechanisms, including energy propagation and barotropic instability of the basic-state flow, also act to shape and maintain the CGT. The implications of these findings for seasonal prediction of the NH extratropical circulation are discussed.
Abstract
Maximum covariance analysis is performed on the fields of boreal summer, tropical rainfall, and Northern Hemisphere (NH) 200-hPa height for the 62-yr period of record of 1948–2009. The leading mode, which appears preferentially in summers preceding the peak phases of the El Niño–Southern Oscillation (ENSO) cycle, involves a circumglobal teleconnection (CGT) pattern in the NH extratropical 200-hPa height field observed in association with Indian monsoon rainfall anomalies. The second mode, which tends to occur in summers following ENSO peak phases, involves a western Pacific–North America (WPNA) teleconnection pattern in the height field observed in association with western North Pacific summer monsoon rainfall anomalies. The CGT pattern is primarily a zonally oriented wave train along the westerly waveguide, while the WPNA pattern is a wave train emanating from the western Pacific monsoon trough and following a great circle. The CGT is accompanied by a pronounced tropical–extratropical seesaw in the zonally symmetric geopotential height and temperature fields, and the WPNA is observed in association with hemispherically uniform anomalies. These ENSO-related features modulate surface air temperature in both the tropics and extratropics. ENSO also affects the wave structure of the CGT and WPNA indirectly, by modulating the strengths of the Indian and western North Pacific monsoons. Linear barotropic mechanisms, including energy propagation and barotropic instability of the basic-state flow, also act to shape and maintain the CGT. The implications of these findings for seasonal prediction of the NH extratropical circulation are discussed.
Abstract
The leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “warm Arctic, cold continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi and Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.
Abstract
The leading interannual mode of winter surface air temperature over the North American (NA) sector, characterized by a “warm Arctic, cold continents” (WACC) pattern, exerts pronounced influences on NA weather and climate, while its underlying mechanisms remain elusive. In this study, the relative roles of surface boundary forcing versus internal atmospheric processes for the formation of the WACC pattern are quantitatively investigated using a combined analysis of observations and large-ensemble atmospheric global climate model simulations. Internal atmospheric variability is found to play an important role in shaping the year-to-year WACC variability, contributing to about half of the total variance. An anomalous SST pattern resembling the North Pacific mode is identified as a major surface boundary forcing pattern in driving the interannual WACC variability over the NA sector, with a minor contribution from sea ice variability over the Chukchi and Bering Seas. Findings from this study not only lead to improved understanding of underlying physics regulating the interannual WACC variability, but also provide important guidance for improved modeling and prediction of regional climate variability over NA and the Arctic region.
Abstract
Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.
Abstract
Antarctic sea ice extent (SIE) has slightly increased over the satellite observational period (1979 to the present) despite global warming. Several mechanisms have been invoked to explain this trend, such as changes in winds, precipitation, or ocean stratification, yet there is no widespread consensus. Additionally, fully coupled Earth system models run under historic and anthropogenic forcing generally fail to simulate positive SIE trends over this time period. In this work, we quantify the role of winds and Southern Ocean SSTs on sea ice trends and variability with an Earth system model run under historic and anthropogenic forcing that nudges winds over the polar regions and Southern Ocean SSTs north of the sea ice to observations from 1979 to 2018. Simulations with nudged winds alone capture the observed interannual variability in SIE and the observed long-term trends from the early 1990s onward, yet for the longer 1979–2018 period they simulate a negative SIE trend, in part due to faster-than-observed warming at the global and hemispheric scale in the model. Simulations with both nudged winds and SSTs show no significant SIE trends over 1979–2018, in agreement with observations. At the regional scale, simulated sea ice shows higher skill compared to the pan-Antarctic scale both in capturing trends and interannual variability in all nudged simulations. We additionally find negligible impact of the initial conditions in 1979 on long-term trends.
Abstract
Significant surface air temperature warming during summer 1979–2020 is not uniformly distributed in the northern midlatitudes over land but rather is confined to several longitudinal sectors including Europe, central Siberia and Mongolia, and both coasts of North America. These hot spots are accompanied by a chain of high pressure ridges from an anomalous, circumglobal Rossby wave train in the upper troposphere. From reanalysis data and several baseline experiments from phase 6 of the Coupled Model Intercomparison Project (CMIP6), we find that the circulation trend pattern is associated with fluctuations of the Atlantic multidecadal variability (AMV) and the interdecadal Pacific oscillation. The phase shift of AMV in the 1990s is particularly noteworthy for accelerating warming averaged over the northern midlatitude land. The amplitude of the observed trend in both surface air temperature and the upper-level geopotential height generally falls beyond the range of multidecadal trends simulated by the CMIP6 preindustrial control runs, supporting the likelihood that anthropogenic forcing played a critical role in the observed trend. On the other hand, the fidelity of the simulated low-frequency modes of variability and their teleconnections, especially on multidecadal time scales, is difficult to assess because of the relatively short observational records. Our mechanistic modeling results indicate that synoptic eddy–mean flow interaction is a key to the formation of the anomalous wave train but how the multidecadal modes can modulate the synoptic eddies through atmosphere–ocean and atmosphere–land interactions remains poorly understood. This gap in our knowledge makes it challenging to quantify the roles of the low-frequency modes and external forcings in causing the observed multidecadal trends.
Abstract
Significant surface air temperature warming during summer 1979–2020 is not uniformly distributed in the northern midlatitudes over land but rather is confined to several longitudinal sectors including Europe, central Siberia and Mongolia, and both coasts of North America. These hot spots are accompanied by a chain of high pressure ridges from an anomalous, circumglobal Rossby wave train in the upper troposphere. From reanalysis data and several baseline experiments from phase 6 of the Coupled Model Intercomparison Project (CMIP6), we find that the circulation trend pattern is associated with fluctuations of the Atlantic multidecadal variability (AMV) and the interdecadal Pacific oscillation. The phase shift of AMV in the 1990s is particularly noteworthy for accelerating warming averaged over the northern midlatitude land. The amplitude of the observed trend in both surface air temperature and the upper-level geopotential height generally falls beyond the range of multidecadal trends simulated by the CMIP6 preindustrial control runs, supporting the likelihood that anthropogenic forcing played a critical role in the observed trend. On the other hand, the fidelity of the simulated low-frequency modes of variability and their teleconnections, especially on multidecadal time scales, is difficult to assess because of the relatively short observational records. Our mechanistic modeling results indicate that synoptic eddy–mean flow interaction is a key to the formation of the anomalous wave train but how the multidecadal modes can modulate the synoptic eddies through atmosphere–ocean and atmosphere–land interactions remains poorly understood. This gap in our knowledge makes it challenging to quantify the roles of the low-frequency modes and external forcings in causing the observed multidecadal trends.
Abstract
Perturbations in the southern annular mode (SAM) are shown to be significantly correlated with SST anomalies in the central tropical Pacific during austral winter and SST anomalies in the eastern tropical Pacific during austral summer. The SAM signature in the Pacific sector resembles a tropically forced Rossby wave train, the so-called Pacific–South American pattern, while the signature in the Indian Ocean sector is a zonally elongated meridional dipole. Thus, the SAM contains strong zonally asymmetric variability and tends to behave differently in the Eastern and Western Hemispheres, with internal dynamics prevailing in the Indian Ocean sector and the forced response to tropical SST anomalies exerting a strong influence in the Pacific sector. The tropically forced component of the SAM in the Pacific sector is related to a geographically fixed active Rossby wave source to the east of Australia within the core of the subtropical jet. In addition to the well-documented positive trend in summer, the SAM also exhibits a negative wintertime trend since 1979, characterized by prominent geopotential height increases over the high latitudes. In both seasons, SAM trends are closely linked to long-term trends in tropical Pacific SST that are independent of the canonical eastern Pacific ENSO variability. Although the SAM is an intrinsic pattern of high-latitude variability, the SAM index reflects the superposition of both high-latitude and tropically forced variability.
Abstract
Perturbations in the southern annular mode (SAM) are shown to be significantly correlated with SST anomalies in the central tropical Pacific during austral winter and SST anomalies in the eastern tropical Pacific during austral summer. The SAM signature in the Pacific sector resembles a tropically forced Rossby wave train, the so-called Pacific–South American pattern, while the signature in the Indian Ocean sector is a zonally elongated meridional dipole. Thus, the SAM contains strong zonally asymmetric variability and tends to behave differently in the Eastern and Western Hemispheres, with internal dynamics prevailing in the Indian Ocean sector and the forced response to tropical SST anomalies exerting a strong influence in the Pacific sector. The tropically forced component of the SAM in the Pacific sector is related to a geographically fixed active Rossby wave source to the east of Australia within the core of the subtropical jet. In addition to the well-documented positive trend in summer, the SAM also exhibits a negative wintertime trend since 1979, characterized by prominent geopotential height increases over the high latitudes. In both seasons, SAM trends are closely linked to long-term trends in tropical Pacific SST that are independent of the canonical eastern Pacific ENSO variability. Although the SAM is an intrinsic pattern of high-latitude variability, the SAM index reflects the superposition of both high-latitude and tropically forced variability.
Abstract
The authors investigate how the global monsoon (GM) precipitation responds to the external and anthropogenic forcing in the last millennium by analyzing a pair of control and forced millennium simulations with the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled ocean–atmosphere model. The forced run, which includes the solar, volcanic, and greenhouse gas forcing, captures the major modes of precipitation climatology comparably well when contrasted with those captured by the NCEP reanalysis. The strength of the modeled GM precipitation in the forced run exhibits a significant quasi-bicentennial oscillation. Over the past 1000 yr, the simulated GM precipitation was weak during the Little Ice Age (1450–1850) with the three weakest periods occurring around 1460, 1685, and 1800, which fell in, respectively, the Spörer Minimum, Maunder Minimum, and Dalton Minimum periods of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030–1240). Before the industrial period, the natural variations in the total amount of effective solar radiative forcing reinforce the thermal contrasts both between the ocean and continent and between the Northern and Southern Hemispheres resulting in the millennium-scale variation and the quasi-bicentennial oscillation in the GM index. The prominent upward trend in the GM precipitation occurring in the last century and the notable strengthening of the global monsoon in the last 30 yr (1961–90) appear unprecedented and are due possibly in part to the increase of atmospheric carbon dioxide concentration, though the authors’ simulations of the effects from recent warming may be overestimated without considering the negative feedbacks from aerosols. The simulated change of GM in the last 30 yr has a spatial pattern that differs from that during the Medieval Warm Period, suggesting that global warming that arises from the increases of greenhouse gases and the input solar forcing may have different effects on the characteristics of GM precipitation. It is further noted that GM strength has good relational coherence with the temperature difference between the Northern and Southern Hemispheres, and that on centennial time scales the GM strength responds more directly to the effective solar forcing than the concurrent forced response in global-mean surface temperature.
Abstract
The authors investigate how the global monsoon (GM) precipitation responds to the external and anthropogenic forcing in the last millennium by analyzing a pair of control and forced millennium simulations with the ECHAM and the global Hamburg Ocean Primitive Equation (ECHO-G) coupled ocean–atmosphere model. The forced run, which includes the solar, volcanic, and greenhouse gas forcing, captures the major modes of precipitation climatology comparably well when contrasted with those captured by the NCEP reanalysis. The strength of the modeled GM precipitation in the forced run exhibits a significant quasi-bicentennial oscillation. Over the past 1000 yr, the simulated GM precipitation was weak during the Little Ice Age (1450–1850) with the three weakest periods occurring around 1460, 1685, and 1800, which fell in, respectively, the Spörer Minimum, Maunder Minimum, and Dalton Minimum periods of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030–1240). Before the industrial period, the natural variations in the total amount of effective solar radiative forcing reinforce the thermal contrasts both between the ocean and continent and between the Northern and Southern Hemispheres resulting in the millennium-scale variation and the quasi-bicentennial oscillation in the GM index. The prominent upward trend in the GM precipitation occurring in the last century and the notable strengthening of the global monsoon in the last 30 yr (1961–90) appear unprecedented and are due possibly in part to the increase of atmospheric carbon dioxide concentration, though the authors’ simulations of the effects from recent warming may be overestimated without considering the negative feedbacks from aerosols. The simulated change of GM in the last 30 yr has a spatial pattern that differs from that during the Medieval Warm Period, suggesting that global warming that arises from the increases of greenhouse gases and the input solar forcing may have different effects on the characteristics of GM precipitation. It is further noted that GM strength has good relational coherence with the temperature difference between the Northern and Southern Hemispheres, and that on centennial time scales the GM strength responds more directly to the effective solar forcing than the concurrent forced response in global-mean surface temperature.
Abstract
Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SST variability in the past four decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.
Abstract
Arctic sea ice melting processes in summer due to internal atmospheric variability have recently received considerable attention. A regional barotropic atmospheric process over Greenland and the Arctic Ocean in summer (June–August), featuring either a year-to-year change or a low-frequency trend toward geopotential height rise, has been identified as an essential contributor to September sea ice loss, in both observations and the CESM1 Large Ensemble (CESM-LE) of simulations. This local melting is further found to be sensitive to remote sea surface temperature (SST) variability in the east-central tropical Pacific Ocean. Here, we utilize five available large “initial condition” Earth system model ensembles and 31 CMIP5 models’ preindustrial control simulations to show that the same atmospheric process, resembling the observed one and the one found in the CESM-LE, also dominates internal sea ice variability in summer on interannual to interdecadal time scales in preindustrial, historical, and future scenarios, regardless of the modeling environment. However, all models exhibit limitations in replicating the magnitude of the observed local atmosphere–sea ice coupling and its sensitivity to remote tropical SST variability in the past four decades. These biases call for caution in the interpretation of existing models’ simulations and fresh thinking about models’ credibility in simulating interactions of sea ice variability with the Arctic and global climate systems. Further efforts toward identifying the causes of these model limitations may provide implications for alleviating the biases and improving interannual- and decadal-time-scale sea ice prediction and future sea ice projection.
Abstract
The central role of tropical sea surface temperature (SST) variability in modulating Northern Hemisphere (NH) extratropical climate has long been known. However, the prevailing pathways of teleconnections in observations and the ability of climate models to replicate these observed linkages remain elusive. Here, we apply maximum covariance analysis between atmospheric circulation and tropical SST to reveal two coexisting tropical–extratropical teleconnections albeit with distinctive spatiotemporal characteristics. The first mode, resembling the Pacific–North American (PNA) pattern, favors a tropical–Arctic in-phase (warm Pacific–warm Arctic) teleconnection in boreal spring and winter. However, the second mode, with a slight seasonal preference of summer, is manifested as an elongated Rossby wave train emanating from the tropical eastern Pacific that features an out-of-phase relationship (cold Pacific–warm Arctic) between tropical central Pacific SSTs and temperature variability over the Arctic (referred to as the PARC mode). While climate models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) appear to successfully simulate the PNA mode and its temporal characteristics, the majority of models’ skill in reproducing the PARC mode is obstructed to some extent by biases in simulating low-frequency SST and rainfall variability over the tropical eastern Pacific and the climatological mean flow over the North Pacific during boreal summer. Considering the contribution of the PARC mode in shaping low-frequency climate variations over the past 42 years from the tropics to the Arctic, improving models’ capability to capture the PARC mode is essential to reduce uncertainties associated with decadal prediction and climate change projection over the NH.
Significance Statement
This study focuses on the skill of models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating two leading observed Northern Hemisphere (NH) teleconnections that show distinctive spatial and temporal characteristics. The first one, the Pacific–North American (PNA) mode, exhibits a warm Pacific–warm Arctic pattern in boreal spring and winter, and the second one, the Pacific–Arctic (PARC) mode, features a cold Pacific–warm Arctic out-of-phase relationship. We find that models are skillful in simulating the PNA mode but not the PARC mode. This limitation may be rooted in unrealistic simulations of the mean state of winds and the low-frequency sea surface temperature variability in the tropical eastern Pacific. These biases call for caution when interpreting current models’ projections of extratropical circulations on multidecadal time scales.
Abstract
The central role of tropical sea surface temperature (SST) variability in modulating Northern Hemisphere (NH) extratropical climate has long been known. However, the prevailing pathways of teleconnections in observations and the ability of climate models to replicate these observed linkages remain elusive. Here, we apply maximum covariance analysis between atmospheric circulation and tropical SST to reveal two coexisting tropical–extratropical teleconnections albeit with distinctive spatiotemporal characteristics. The first mode, resembling the Pacific–North American (PNA) pattern, favors a tropical–Arctic in-phase (warm Pacific–warm Arctic) teleconnection in boreal spring and winter. However, the second mode, with a slight seasonal preference of summer, is manifested as an elongated Rossby wave train emanating from the tropical eastern Pacific that features an out-of-phase relationship (cold Pacific–warm Arctic) between tropical central Pacific SSTs and temperature variability over the Arctic (referred to as the PARC mode). While climate models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6) appear to successfully simulate the PNA mode and its temporal characteristics, the majority of models’ skill in reproducing the PARC mode is obstructed to some extent by biases in simulating low-frequency SST and rainfall variability over the tropical eastern Pacific and the climatological mean flow over the North Pacific during boreal summer. Considering the contribution of the PARC mode in shaping low-frequency climate variations over the past 42 years from the tropics to the Arctic, improving models’ capability to capture the PARC mode is essential to reduce uncertainties associated with decadal prediction and climate change projection over the NH.
Significance Statement
This study focuses on the skill of models in phase 6 of the Coupled Model Intercomparison Project (CMIP6) in simulating two leading observed Northern Hemisphere (NH) teleconnections that show distinctive spatial and temporal characteristics. The first one, the Pacific–North American (PNA) mode, exhibits a warm Pacific–warm Arctic pattern in boreal spring and winter, and the second one, the Pacific–Arctic (PARC) mode, features a cold Pacific–warm Arctic out-of-phase relationship. We find that models are skillful in simulating the PNA mode but not the PARC mode. This limitation may be rooted in unrealistic simulations of the mean state of winds and the low-frequency sea surface temperature variability in the tropical eastern Pacific. These biases call for caution when interpreting current models’ projections of extratropical circulations on multidecadal time scales.
Abstract
Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.
Abstract
Over the past 40 years, the Arctic sea ice minimum in September has declined. The period between 2007 and 2012 showed accelerated melt contributed to the record minima of 2007 and 2012. Here, observational and model evidence shows that the changes in summer sea ice since the 2000s reflect a continuous anthropogenically forced melting masked by interdecadal variability of Arctic atmospheric circulation. This variation is partially driven by teleconnections originating from sea surface temperature (SST) changes in the east-central tropical Pacific via a Rossby wave train propagating into the Arctic [herein referred to as the Pacific–Arctic teleconnection (PARC)], which represents the leading internal mode connecting the pole to lower latitudes. This mode has contributed to accelerated warming and Arctic sea ice loss from 2007 to 2012, followed by slower declines in recent years, resulting in the appearance of a slowdown over the past 11 years. A pacemaker model simulation, in which we specify observed SST in the tropical eastern Pacific, demonstrates a physically plausible mechanism for the PARC mode. However, the model-based PARC mechanism is considerably weaker and only partially accounts for the observed acceleration of sea ice loss from 2007 to 2012. We also explore features of large-scale circulation patterns associated with extreme melting periods in a long (1800 yr) CESM preindustrial simulation. These results further support that remote SST forcing originating from the tropical Pacific can excite significant warm episodes in the Arctic. However, further research is needed to identify the reasons for model limitations in reproducing the observed PARC mode featuring a cold Pacific–warm Arctic connection.
Abstract
In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.
Abstract
In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.