Search Results

You are looking at 11 - 20 of 45 items for

  • Author or Editor: R. M. Johnson x
  • Refine by Access: All Content x
Clear All Modify Search
R. Bradley Pierce, Fred M. Reames, Tom H. Zapotocny, Donald R. Johnson, and Bart J. Wolf

Abstract

In a validation experiment of a hybrid isentropic–sigma coordinate primitive equation model developed at the University of Wisconsin (the UW θσ model), an initial value technique is used to investigate numerically the normal-mode characteristics of baroclinically amplifying disturbances over a spectrum of meteorologically significant wavelength. The experiments are designed to determine the impact of coupling an isentropic-coordinate free atmospheric domain to a sigma-coordinate planetary boundary layer (PBL) on the normal-mode characteristics. The growth rate and phase speed spectra of the most unstable normal modes are obtained for an analytically prescribed zonal flow field. The evolution and vertical structure of the kinetic energy, energy conversions, growth rates, and geopotential fields are investigated.

Several modifications have been made to earlier versions of the UW θσ model to overcome noise introduced by adjustments associated with emerging and submerging grid volumes at the sigma–isentropic interface. With these modifications, the hybrid model accurately simulates the evolution and structure of normal-mode baroclinic disturbances for all wavenumbers considered except for wavenumber two. The normal-mode growth rate and phase speed spectra compare well with previous studies using standard sigma coordinate models. There is no evidence of aliasing the baroclinic normal-mode characteristics due to the coupling of isentropic and sigma domains.

Full access
H. L. Johnson Jr., R. D. Hart, M. A. Lind, R. E. Powell, and J. L. Stanford

Abstract

Thunderstorm radio noise measurements at several frequencies in the range 0.01–74 MHz have been made with specially designed remote recording stations in Iowa. The data were recorded during the spring and summer of 1974 when a series of severe storm systems produced a great number of large hail and tornado reports in Iowa. Computer analyses were made of nearly a billion bits of data, corresponding to 170 h of real-time recordings. Careful compilations of surface severe weather reports, hail damage information from insurance companies, and studies on the Des Moines WSR-57 radar echoes were compared with the analyzed radio noise data. The results include the following:

1) In agreement with earlier work, large‐amplitude radio noise impulse rates were found to he generally good indicators of thunderstorm severity. Although the majority of the radio energy radiated from major lightning strokes occurs in the 0.01 MHz range, this frequency was found to be a poor indicator of storm severity; the higher frequencies (megahertz range) were considerably better. The character of the noise appears similar at 2.5 and 74 MHz.

2) In at least five cases, tornadic events correlated in time with radio noise count rate peaks. One funnel cloud was reported equidistant at 60 km from two recording stations and coincident with count rate peaks at both stations, lending credence to the idea that the peak was associated with the storm occurrence, rather than with corona or other local effects.

3) No unusual radio noise was recorded during the lifetime of a small, verified tornado at 19 km range. In addition, the count rates for its parent thunderstorm would not have indicated severity.

In spite of inherent atmospheric variableness, the radio noise technique is a useful complementary indicator of storm severity.

Full access
Donald R. Johnson, Tom H. Zapotocny, Fred M. Reames, Bart J. Wolf, and R. Bradley Pierce

Abstract

The primary objectives of this study are threefold: 1) to compare simulators of dry and moist baroclinic development from 10-and 22-layer hybrid isentropic-sigma coordinate models with those from 11-, 27-, and 35-layer sigma coordinate models; 2) to examine the ability of the models to transport water vapor and simulate equivalent potential temperature θe; and 3) to compare predictions of the timing, location, and amount of precipitation. A model's capability to predict precipitation sterns from the accuracy of its simulation of the joint distribution of mass, potential temperature, and water vapor throughout the model domain. In a series of experiments to compare simulations of precipitation, several analytic distributions of water vapor are specified initially. The water vapor distributions include a “cylinder”extending vertically throughout the atmosphere and “lenses” within isentropic, sigma, and isobaric layers. The effect of increased horizontal resolution are also studied.

Results indicate that when the relative humidity is vertically uniform through a substantial extent of the atmosphere, all the models produce very similar precipitation distributions. However, when water vapor is confined to relatively shallow layers, the ability of the sigma coordinate models to simulate the timing, location, and amount of precipitation is severely compromised. Furthermore, the 10-layer hybrid model conserves θe to a higher degree of accuracy and simulates a more realistic evolution of precipitation even when compared to results from sigma models with increased vertical and horizontal resolution. In all instances, the experiments demonstrate that advantages reside in prediction of precipitation with the hybrid model. Both theoretical and conceptual bases for thew differences are provided.

Full access
R. E. Pandya, D. R. Smith, M. K. Ramamurthy, P. J. Croft, M. J. Hayes, K. A. Murphy, J. D. McDonnell, R. M. Johnson, and H. A. Friedman

The 11th American Meteorological Society (AMS) Education Symposium was held from 13 to 15 January 2002 in Orlando, Florida, as part of the 82nd Annual Meeting of the AMS. The theme of the symposium was “creating opportunities in educational outreach in the atmospheric and related sciences.” Drawing from traditional strengths in meteorology and numerous national recommendations, the presentations and posters of the symposium highlighted three opportunities for reform. These opportunities build on partnerships between diverse educational stakeholders, efforts to make science education more like scientific practice, and strategies that place the atmospheric sciences within a larger, multidisciplinary context that includes oceanography, hydrology, and earth-system science.

Full access
Tom H. Zapotocny, Allen J. Lenzen, Donald R. Johnson, Todd K. Schaack, and Fred M. Reames

Abstract

Five- and 10-day inert trace constituent distributions prognostically simulated with the University of Wisconsin (UW) hybrid isentropic–sigma (θσ) model, the nominally identical UW sigma (σ) model, and the National Center for Atmospheric Research Community Climate Model 2 (CCM2) are analyzed and compared in this study. The UW θσ and σ gridpoint models utilize the flux form of the primitive equations, while CCM2 is based on the spectral representation and uses semi-Lagrangian transport (SLT) for trace constituents. Results are also compared against a version of the CCM that uses spectral transport for the trace constituent. These comparisons 1) contrast the spatial and temporal evolution of the filamentary transport of inert trace constituents simulated with the UW θσ and σ models against a “state of the art” GCM under both isentropic and nonisentropic conditions and 2) examine the ability of the models to conserve the initial trace constituent maximum value during 10-day integrations.

Results show that the spatial distributions of trace constituent evolve in a similar manner, regardless of the transport scheme or model type. However, when compared to the UW θσ model’s ability to simulate filamentary structure and conserve the initial trace constituent maximum value, results from the other models in this study indicate substantial spurious dispersion. The more accurate conservation demonstrated with the UW θσ model is especially noticeable within extratropical amplifying baroclinic waves, and it stems from the dominance of two-dimensional, quasi-horizontal isentropic exchange processes in a stratified baroclinic atmosphere. This condition, which largely precludes spurious numerical dispersion associated with vertical advection, is unique to isentropic coordinates. Conservation of trace constituent maxima in sigma coordinates suffers from the complexity of, and inherent need for, resolving three-dimensional transport in the presence of vertical wind shear during baroclinic amplification, a condition leading to spurious vertical dispersion. The experiments of this study also indicate that the shape-preserving SLT scheme used in CCM2 further reduces conservation of the initial maximum value when compared to the spectral transport of trace constituents, although the patterns are more coherent and the Gibbs phenomenon is eliminated.

Full access
S. L. Durden, M. A. Fischman, R. A. Johnson, A. J. Chu, M. N. Jourdan, and S. Tanelli

Abstract

Measurement of precipitation Doppler velocity by spaceborne radar is complicated by the large velocity of the satellite platform. Even if successive pulses are well correlated, the velocity measurement may be biased if the precipitation target does not uniformly fill the radar footprint. It has been previously shown that the bias in such situations can be reduced if full spectral processing is used. The authors present a processor based on field-programmable gate array (FPGA) technology that can be used for spectral processing of data acquired by future spaceborne precipitation radars. The requirements for and design of the Doppler processor are addressed. Simulation and laboratory test results show that the processor can meet real-time constraints while easily fitting in a single FPGA.

Full access
Jeffry Rothermel, Dean R. Cutten, R. Michael Hardesty, Robert T. Menzies, James N. Howell, Steven C. Johnson, David M. Tratt, Lisa D. Olivier, and Robert M. Banta

In 1992 the atmospheric lidar remote sensing groups of the National Aeronautics and Space Administration Marshall Space Flight Center, the National Oceanic and Atmospheric Administration/Environmental Technology Laboratory (NOAA/ETL), and the Jet Propulsion Laboratory began a joint collaboration to develop an airborne high-energy Doppler laser radar (lidar) system for atmospheric research and satellite validation and simulation studies. The result is the Multicenter Airborne Coherent Atmospheric Wind Sensor (MACAWS), which has the capability to remotely sense the distribution of wind and absolute aerosol backscatter in three-dimensional volumes in the troposphere and lower stratosphere.

A factor critical to the programmatic feasibility and technical success of this collaboration has been the utilization of existing components and expertise that were developed for previous atmospheric research by the respective institutions. For example, the laser transmitter is that of the mobile ground-based Doppler lidar system developed and used in atmospheric research for more than a decade at NOAA/ETL.

The motivation for MACAWS is threefold: 1) to obtain fundamental measurements of subsynoptic-scale processes and features to improve subgrid-scale parameterizations in large-scale models, 2) to obtain datasets in order to improve the understanding of and predictive capabilities for meteorological systems on subsynoptic scales, and 3) to validate (simulate) the performance of existing (planned) satellite-borne sensors.

Initial flight tests were made in September 1995; subsequent flights were made in June 1996 following system improvements. This paper describes the MACAWS instrument, principles of operation, examples of measurements over the eastern Pacific Ocean and western United States, and future applications.

Full access
K. Nisha, Suryachandra A. Rao, V. V. Gopalakrishna, R. R. Rao, M. S. Girishkumar, T. Pankajakshan, M. Ravichandran, S. Rajesh, K. Girish, Z. Johnson, M. Anuradha, S. S. M. Gavaskar, V. Suneel, and S. M. Krishna

Abstract

Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions during the winter seasons of 2002–06. Despite the existence of a large low-salinity water intrusion into the Lakshadweep Sea, there was an unusually lower number of near-surface thermal inversions during the winter 2005/06 compared to the other winters. The possible causative mechanisms are examined. During the summer monsoon of 2005 and the following winter season, unusually heavy rainfall occurred over the southwestern Bay of Bengal and the Lakshadweep Sea compared to other years in the study. Furthermore, during the winter of 2005, both the East India Coastal Current and the Winter Monsoon Current were stronger compared to the other years, transporting larger quantities of low salinity waters from the Bay of Bengal into the Lakshadweep Sea where a relatively cooler near-surface thermal regime persisted owing to prolonged upwelling until November 2005. In addition, the observed local surface wind field was relatively stronger, and the net surface heat gain to the ocean was weaker over the Lakshadweep Sea during the postmonsoon season of 2005. Thus, in winter 2005/06, the combination of prolonged upwelling and stronger surface wind field resulting in anomalous net surface heat loss caused weaker secondary warming of the near-surface waters in the Lakshadweep Sea. This led to a weaker horizontal sea surface temperature (SST) gradient between the Lakshadweep Sea and the intruding Bay of Bengal waters and, hence, a reduced number of thermal inversions compared to other winters despite the presence of stronger vertical haline stratification.

Full access
Scott Sandgathe, Bonnie R. Brown, Jessie C. Carman, Johnna M. Infanti, Bradford Johnson, David McCarren, and Eileen McIlvain
Free access
G. M. Martin, D. W. Johnson, D. P. Rogers, P. R. Jonas, P. Minnis, and D. A. Hegg

Abstract

Decoupling of the marine boundary layer beneath stratocumulus clouds and the formation of cumulus clouds at the top of a surface-based mixed layer (SML) have frequently been observed and modeled. When such cumulus clouds penetrate the overlying stratocumulus layer, the cloud microphysics and hence the radiative properties of the cloud are altered locally. Observations made during a series of Lagrangian experiments in the Azores as part of the Atlantic Stratocumulus Transition Experiment (ASTEX, June 1992) have been analyzed to ascertain how the properties of a stratocumulus layer with which cumulus clouds are interacting differ from those of an unaffected cloud layer. The results suggest that in regions where cumulus clouds penetrate the cloud layer, the stratocumulus is thickened as the cumuli spread out into its base. Transport of air from the SML into the cloud by convective updrafts is observed, and the increase in available moisture within the penetrating cumulus clouds results in increased liquid water content and hence changes in the droplet size spectra. The greater liquid water path results in a larger cloud optical depth, so that regions where cumulus are interesting with the stratocumulus layer can be observed in satellite measurements. Therefore, it is likely that the surface energy budget may be significantly altered by this process, and it may be necessary to parameterize these effects in large-scale numerical models.

Full access