Search Results

You are looking at 11 - 20 of 37 items for

  • Author or Editor: Richard J Pasch x
  • Refine by Access: All Content x
Clear All Modify Search
Richard J. Pasch
,
Lixion A. Avila
, and
John L. Guiney

Abstract

The 1998 hurricane season in the Atlantic basin is summarized, and the individual tropical storms and hurricanes are described. It was an active season with a large number of landfalls. There was a near-record number of tropical cyclone–related deaths, due almost entirely to Hurricane Mitch in Central America. Brief summaries of forecast verification and tropical wave activity during 1998 are also presented.

Full access
Lixion A. Avila
,
Richard J. Pasch
, and
Jiann-Gwo Jiing

Abstract

A total of 62 and 63 tropical waves were counted in the Atlantic from May to November during 1996 and 1997, respectively. These waves led to the formation of 12 of the 13 total number of tropical cyclones in 1996 and only 3 of 7 tropical cyclones in 1997. All of the tropical depressions became tropical storms in 1996 and only one failed to become a named storm in 1997. On average, 62% of the Atlantic tropical depressions develop from tropical waves. These waves contributed to the formation of 92% of the eastern Pacific tropical cyclones in 1996 and 83% in 1997. Tropical waves and their environment during the 1996 and 1997 seasons are discussed.

Full access
T. N. Krishnamurti
,
Y. Ramanathan
,
Hua-Lu Pan
,
Richard J. Pasch
, and
John Molinari

Abstract

Modeling of convective rainfall rates is a central problem in tropical meteorology. Toward numerical weather prediction efforts the semi-prognostic approach (i.e., a one time-step prediction of rainfall rates) provides a relevant test of cumulus parameterization methods. In this paper we compare five currently available cumulus parameterization schemes using the semi-prognostic approach. The calculated rainfall rates are compared with observed estimates provided in the recent publication of Hudlow and Patterson (1979). Among these the scheme proposed by Kuo (1974) provides the least root-mean-square error between the calculated and the observed estimates, slightly better than that of Arakawa and Schubert (1974), which was used by Lord (1978a). The simplicity of the approach holds promise for numerical weather prediction. Unlike some of the other schemes this method is not sensitive to and does not require computation of internal parameters such as profiles of cloud mass flux updrafts and downdrafts, detrainment of cloud matter and entrainment of environmental air. The present paper does not address the prognostic evolution and verification of the vertical distribution of temperature, humidity or momentum. These will be compared for the different methods in more detail separately.

Full access
Edward N. Rappaport
,
Lixion A. Avila
,
Miles B. Lawrence
,
Max Mayfield
, and
Richard J. Pasch

Abstract

The 1995 eastern North Pacific hurricane season is reviewed. The activity comprised 11 tropical cyclones, consisting of seven hurricanes, three tropical storms, and one tropical depression. Hurricane Ismael caused a large loss of life in the southern Gulf of California.

Full access
John L. Beven II
,
Lixion A. Avila
,
Eric S. Blake
,
Hugh D. Cobb
, and
Richard J. Pasch

Abstract

The Best Track Change Committee of the National Hurricane Center evaluates proposed changes to the Hurricane Database (HURDAT) in the Atlantic and eastern North Pacific basins. In the companion paper, Gruskin documents a possible tropical cyclone that affected portions of the eastern United States on 27–28 June 2006 and proposes that it be added to HURDAT. The committee reviewed the aircraft, radar, rawinsonde, satellite, and surface data available on this system and found it to be a challenging and complex system. A reconnaissance aircraft flying in the system in real time failed to find a closed circulation before landfall, and kinematic parameters suggest the system was more likely to have the structure of an open wave, with any surface circulation at best being poorly defined. Because of the lack of conclusive evidence regarding the existence of a closed surface circulation before landfall, the committee has decided not to add this system to HURDAT as a tropical cyclone.

Full access
Richard D. Knabb
,
Lixion A. Avila
,
John L. Beven
,
James L. Franklin
,
Richard J. Pasch
, and
Stacy R. Stewart

Abstract

The 2005 eastern North Pacific hurricane season is summarized, the individual tropical cyclones are described, and official track and intensity forecasts are verified and evaluated. The season’s overall activity was, by most measures, below average. While a near-average 15 tropical storms formed, many of them were relatively weak and short-lived. Seven of these storms became hurricanes, but only one reached major hurricane status (an intensity of 100 kt or greater on the Saffir–Simpson hurricane scale) in the eastern North Pacific basin. One of the hurricanes, Adrian, approached Central America in May but weakened to a tropical depression prior to landfall. Adrian was the only eastern North Pacific tropical cyclone to make landfall during 2005, and it was directly responsible for one fatality.

Full access
Daniel J. Halperin
,
Henry E. Fuelberg
,
Robert E. Hart
,
Joshua H. Cossuth
,
Philip Sura
, and
Richard J. Pasch

Abstract

Tropical cyclone (TC) forecasts rely heavily on output from global numerical models. While considerable research has investigated the skill of various models with respect to track and intensity, few studies have considered how well global models forecast TC genesis in the North Atlantic basin. This paper analyzes TC genesis forecasts from five global models [Environment Canada's Global Environment Multiscale Model (CMC), the European Centre for Medium-Range Weather Forecasts (ECMWF) global model, the Global Forecast System (GFS), the Navy Operational Global Atmospheric Prediction System (NOGAPS), and the Met Office global model (UKMET)] over several seasons in the North Atlantic basin. Identifying TCs in the model is based on a combination of methods used previously in the literature and newly defined objective criteria. All model-indicated TCs are classified as a hit, false alarm, early genesis, or late genesis event. Missed events also are considered. Results show that the models' ability to predict TC genesis varies in time and space. Conditional probabilities when a model predicts genesis and more traditional performance metrics (e.g., critical success index) are calculated. The models are ranked among each other, and results show that the best-performing model varies from year to year. A spatial analysis of each model identifies preferred regions for genesis, and a temporal analysis indicates that model performance expectedly decreases as forecast hour (lead time) increases. Consensus forecasts show that the probability of genesis noticeably increases when multiple models predict the same genesis event. Overall, this study provides a climatology of objectively identified TC genesis forecasts in global models. The resulting verification statistics can be used operationally to help refine deterministic and probabilistic TC genesis forecasts and potentially improve the models examined.

Full access
Miles B. Lawrence
,
Lixion A. Avila
,
Jack L. Beven
,
James L. Franklin
,
John L. Guiney
, and
Richard J. Pasch

Abstract

The 1999 Atlantic basin hurricane season produced 4 tropical storms and 8 hurricanes for a total of 12 named tropical cyclones. Seven of these affected land. Hurricane Floyd—the deadliest U.S. hurricane since Agnes in 1972—caused a disastrous flood event over the U.S. mid-Atlantic and northeastern coastal states, resulting in 56 U.S. deaths and 1 death in the Bahamas. Heavy rain from a tropical depression contributed to some 400 inland flood deaths in Mexico.

Full access
Anu Simon
,
Andrew B. Penny
,
Mark DeMaria
,
James L. Franklin
,
Richard J. Pasch
,
Edward N. Rappaport
, and
David A. Zelinsky

Abstract

This study discusses the development of the Hurricane Forecast Improvement Program (HFIP) Corrected Consensus Approach (HCCA) for tropical cyclone track and intensity forecasts. The HCCA technique relies on the forecasts of separate input models for both track and intensity and assigns unequal weighting coefficients based on a set of training forecasts. The HCCA track and intensity forecasts for 2015 were competitive with some of the best-performing operational guidance at the National Hurricane Center (NHC); HCCA was the most skillful model for Atlantic track forecasts through 48 h. Average track input model coefficients for the 2015 forecasts in both the Atlantic and eastern North Pacific basins were largest for the European Centre for Medium-Range Weather Forecasts (ECMWF) deterministic model and the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) ensemble mean, but the relative magnitudes of the intensity coefficients were more varied. Input model sensitivity experiments conducted using retrospective HCCA forecasts from 2011 to 2015 indicate that the ECMWF deterministic model had the largest positive impact on the skill of the HCCA track forecasts in both basins. The most important input models for HCCA intensity forecasts are the Hurricane Weather Research and Forecasting (HWRF) Model and the Coupled Ocean–Atmosphere Mesoscale Prediction System-Tropical Cyclone (COAMPS-TC) model initialized from the GFS. Several updates were incorporated into the HCCA formulation prior to the 2016 season. Verification results indicate HCCA continued to be a skillful model, especially for short-range (12–48 h) track forecasts in both basins.

Full access
Richard J. Pasch
,
Miles B. Lawrence
,
Lixion A. Avila
,
John L. Beven
,
James L. Franklin
, and
Stacy R. Stewart

Abstract

The 2002 Atlantic hurricane season is summarized. Although the season's total of 12 named storms was above normal, many of these were weak and short-lived. Eight of the named cyclones made landfall in the United States, including Lili, the first hurricane to hit the United States in nearly 3 yr.

Full access