Search Results
You are looking at 11 - 14 of 14 items for
- Author or Editor: Robert A. Kropfli x
- Refine by Access: All Content x
The 1995 Arizona Program was a field experiment aimed at advancing the understanding of winter storm development in a mountainous region of central Arizona. From 15 January through 15 March 1995, a wide variety of instrumentation was operated in and around the Verde Valley southwest of Flagstaff, Arizona. These instruments included two Doppler dual-polarization radars, an instrumented airplane, a lidar, microwave and infrared radiometers, an acoustic sounder, and other surface-based facilities. Twenty-nine scientists from eight institutions took part in the program. Of special interest was the interaction of topographically induced, storm-embedded gravity waves with ambient upslope flow. It is hypothesized that these waves serve to augment the upslope-forced precipitation that falls on the mountain ridges. A major thrust of the program was to compare the observations of these winter storms to those predicted with the Clark-NCAR 3D, nonhydrostatic numerical model.
The 1995 Arizona Program was a field experiment aimed at advancing the understanding of winter storm development in a mountainous region of central Arizona. From 15 January through 15 March 1995, a wide variety of instrumentation was operated in and around the Verde Valley southwest of Flagstaff, Arizona. These instruments included two Doppler dual-polarization radars, an instrumented airplane, a lidar, microwave and infrared radiometers, an acoustic sounder, and other surface-based facilities. Twenty-nine scientists from eight institutions took part in the program. Of special interest was the interaction of topographically induced, storm-embedded gravity waves with ambient upslope flow. It is hypothesized that these waves serve to augment the upslope-forced precipitation that falls on the mountain ridges. A major thrust of the program was to compare the observations of these winter storms to those predicted with the Clark-NCAR 3D, nonhydrostatic numerical model.
Abstract
Ice cloud microphysical parameters derived from a remote sensing method that uses ground-based measurements from the Environmental Technology Laboratory’s Ka-band radar and an IR radiometer are compared to those obtained from aircraft sampling for the cirrus priority event from the FIRE-II experiment. Aircraft cloud samples were taken not only by traditional two-dimensional probes but also by using a new video sampler to account for small particles. The cloud parameter comparisons were made for time intervals when aircraft were passing approximately above ground-based instruments that were pointed vertically. Comparing characteristic particle sizes expressed in terms of median mass diameters of equal-volume spheres yielded a relative standard deviation of about 30%. The corresponding standard deviation for the cloud ice water content comparisons was about 55%. Such an agreement is considered good given uncertainties of both direct and remote approaches and several orders of magnitude in natural variability of ice cloud parameters. Values of reflectivity measured by the radar and calculated from aircraft samples also showed a reasonable agreement; however, calculated reflectivities averaged approximately 2 dB smaller than those measured. The possible reasons for this small bias are discussed. Ground-based and aircraft-derived particle characteristic sizes are compared to those available from published satellite measurements of this parameter for the cirrus priority case from FIRE-II. Finally, simultaneous and collocated, ground-based measurements of visible (0.523 nm) and longwave IR (10–11.4 μm) ice cloud extinction optical thickness obtained during the 1995 Arizona Program are also compared. These comparisons, performed for different cloud conditions, revealed a relative standard deviation of less than 20%;however, no systematic excess of visible extinction over IR extinction was observed in the considered experimental events.
Abstract
Ice cloud microphysical parameters derived from a remote sensing method that uses ground-based measurements from the Environmental Technology Laboratory’s Ka-band radar and an IR radiometer are compared to those obtained from aircraft sampling for the cirrus priority event from the FIRE-II experiment. Aircraft cloud samples were taken not only by traditional two-dimensional probes but also by using a new video sampler to account for small particles. The cloud parameter comparisons were made for time intervals when aircraft were passing approximately above ground-based instruments that were pointed vertically. Comparing characteristic particle sizes expressed in terms of median mass diameters of equal-volume spheres yielded a relative standard deviation of about 30%. The corresponding standard deviation for the cloud ice water content comparisons was about 55%. Such an agreement is considered good given uncertainties of both direct and remote approaches and several orders of magnitude in natural variability of ice cloud parameters. Values of reflectivity measured by the radar and calculated from aircraft samples also showed a reasonable agreement; however, calculated reflectivities averaged approximately 2 dB smaller than those measured. The possible reasons for this small bias are discussed. Ground-based and aircraft-derived particle characteristic sizes are compared to those available from published satellite measurements of this parameter for the cirrus priority case from FIRE-II. Finally, simultaneous and collocated, ground-based measurements of visible (0.523 nm) and longwave IR (10–11.4 μm) ice cloud extinction optical thickness obtained during the 1995 Arizona Program are also compared. These comparisons, performed for different cloud conditions, revealed a relative standard deviation of less than 20%;however, no systematic excess of visible extinction over IR extinction was observed in the considered experimental events.
A new millimeter-wave cloud radar (MMCR) has been designed to provide detailed, long-term observations of nonprecipitating and weakly precipitating clouds at Cloud and Radiation Testbed (CART) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) program. Scientific requirements included excellent sensitivity and vertical resolution to detect weak and thin multiple layers of ice and liquid water clouds over the sites and long-term, unattended operations in remote locales. In response to these requirements, the innovative radar design features a vertically pointing, single-polarization, Doppler system operating at 35 GHz (Ka band). It uses a low-peak-power transmitter for long-term reliability and high-gain antenna and pulse-compressed waveforms to maximize sensitivity and resolution. The radar uses the same kind of signal processor as that used in commercial wind profilers. The first MMCR began operations at the CART in northern Oklahoma in late 1996 and has operated continuously there for thousands of hours. It routinely provides remarkably detailed images of the ever-changing cloud structure and kinematics over this densely instrumented site. Examples of the data are presented. The radar measurements will greatly improve quantitative documentation of cloud conditions over the CART sites and will bolster ARM research to understand how clouds impact climate through their effects on radiative transfer. Millimeter-wave radars such as the MMCR also have potential applications in the fields of aviation weather, weather modification, and basic cloud physics research.
A new millimeter-wave cloud radar (MMCR) has been designed to provide detailed, long-term observations of nonprecipitating and weakly precipitating clouds at Cloud and Radiation Testbed (CART) sites of the Department of Energy's Atmospheric Radiation Measurement (ARM) program. Scientific requirements included excellent sensitivity and vertical resolution to detect weak and thin multiple layers of ice and liquid water clouds over the sites and long-term, unattended operations in remote locales. In response to these requirements, the innovative radar design features a vertically pointing, single-polarization, Doppler system operating at 35 GHz (Ka band). It uses a low-peak-power transmitter for long-term reliability and high-gain antenna and pulse-compressed waveforms to maximize sensitivity and resolution. The radar uses the same kind of signal processor as that used in commercial wind profilers. The first MMCR began operations at the CART in northern Oklahoma in late 1996 and has operated continuously there for thousands of hours. It routinely provides remarkably detailed images of the ever-changing cloud structure and kinematics over this densely instrumented site. Examples of the data are presented. The radar measurements will greatly improve quantitative documentation of cloud conditions over the CART sites and will bolster ARM research to understand how clouds impact climate through their effects on radiative transfer. Millimeter-wave radars such as the MMCR also have potential applications in the fields of aviation weather, weather modification, and basic cloud physics research.
Snowstorms generated over the Great Lakes bring localized heavy precipitation, blizzard conditions, and whiteouts to downwind shores. Hazardous freezing rain often affects the same region in winter. Conventional observations and numerical models generally are resolved too coarsely to allow detection or accurate prediction of these mesoscale severe weather phenomena. The Lake Ontario Winter Storms (LOWS) project was conducted to demonstrate and evaluate the potential for real-time mesoscale monitoring and location-specific prediction of lake-effect storms and freezing rain, using the newest of available technologies. LOWS employed an array of specialized atmospheric remote sensors (a dual-polarization short wavelength radar, microwave radiometer, radio acoustic sounding system, and three wind profilers) with supporting observing systems and mesoscale numerical models. An overview of LOWS and its initial accomplishments is presented.
Snowstorms generated over the Great Lakes bring localized heavy precipitation, blizzard conditions, and whiteouts to downwind shores. Hazardous freezing rain often affects the same region in winter. Conventional observations and numerical models generally are resolved too coarsely to allow detection or accurate prediction of these mesoscale severe weather phenomena. The Lake Ontario Winter Storms (LOWS) project was conducted to demonstrate and evaluate the potential for real-time mesoscale monitoring and location-specific prediction of lake-effect storms and freezing rain, using the newest of available technologies. LOWS employed an array of specialized atmospheric remote sensors (a dual-polarization short wavelength radar, microwave radiometer, radio acoustic sounding system, and three wind profilers) with supporting observing systems and mesoscale numerical models. An overview of LOWS and its initial accomplishments is presented.