Search Results

You are looking at 11 - 18 of 18 items for

  • Author or Editor: Roger Reinking x
  • Refine by Access: All Content x
Clear All Modify Search
Sergey Y. Matrosov, Robert A. Kropfli, Roger F. Reinking, and Brooks E. Martner

Abstract

Model calculations and measurements of the specific propagation and backscatter differential phase shifts (K DP and δ o, respectively) in rain are discussed for X- (λ ∼ 3 cm) and Ka-band (λ ∼ 0.8 cm) radar wavelengths. The details of the drop size distribution have only a small effect on the relationships between K DP and rainfall rate R. These relationships, however, are subject to significant variations due to the assumed model of the drop aspect ratio as a function of their size. The backscatter differential phase shift at X band for rain rates of less than about 15 mm h−1 is generally small and should not pose a serious problem when estimating K DP from the total phase difference at range intervals of several kilometers. The main advantage of using X-band wavelengths compared to S-band (λ ∼ 10–11 cm) wavelengths is an increase in K DP by a factor of about 3 for the same rainfall rate. The relative contribution of the backscatter differential phase to the total phase difference at Ka band is significantly larger than at X band. This makes propagation and backscatter phase shift contributions comparable for most practical cases and poses difficulties in estimating rainfall rate from Ka-band measurements of the differential phase.

Experimental studies of rain using X-band differential phase measurements were conducted near Boulder, Colorado, in a stratiform, intermittent rain with a rate averaging about 4–5 mm h−1. The differential phase shift approach proved to be effective for such modest rains, and finer spatial resolutions were possible in comparison to those achieved with similar measurements at longer wavelengths. A K DPR relation derived for the mean drop aspect ratio (R = 20.5K0.80DP) provided a satisfactory agreement between rain accumulations derived from radar measurements of the differential phase and data from several nearby high-resolution surface rain gauges. For two rainfall events, radar estimates based on the assumed mean drop aspect ratio were, on average, quite close to the gauge measurements with about 38% relative standard deviation of radar data from the gauge data.

Full access
Roger F. Reinking, Sergey Y. Matrosov, Roelof T. Bruintjes, and Brooks E. Martner

Abstract

Polarimetric radar can be used to identify various types of hydrometeors. Ice crystals of the varied growth habits depolarize and backscatter millimeter-wavelength radiation according to crystal aspect ratio, bulk density, and orientation, and the polarization state of the incident radiation. In this paper model calculations of the depolarization caused by various crystal types are extended from previous work, and Ka-band (8.66 mm) radar measurements of linear and elliptical depolarization ratios (LDR and EDR) from various ice hydrometeors are presented. The measurements for regular crystals are related to the models. Drizzle drops, which are quasi-spherical, serve as a reference. Signature discrimination in cloud systems with more than one type of hydrometeor is addressed.

The model calculations illustrate the interplay of the parameters that control depolarization. They predict that in the depolarization signatures, crystals of the various basic planar and columnar habits should generally be most separable, one habit group from another and, to a degree, within each group when they occur in common, mature size distributions. It is verified in this and related papers that measurements of depolarization with a Ka-band dual-polarization radar provide good estimates of hydrometeor identity to separately distinguish drizzle, pristine crystals of various growth habits, graupel, and aggregates in winter storm clouds that have reasonable horizontal homogeneity over short distances (∼10–20 km). Characterization of the mix of two or three hydrometeor types is also possible, once the individual types are identified in some part of the cloud. Quantitative agreement between the measurements and the models, supported by snow crystal samples, was much better for EDR than for LDR; that is, EDR enabled more specific hydrometeor identification. However, LDR provided indications of randomness of crystal orientation and a wider decibel gap differentiating graupel from drizzle.

Full access
Sergey Y. Matrosov, Roger F. Reinking, Robert A. Kropfli, and Bruce W. Bartram

Abstract

An approach to distinguish between various types of ice hydrometeors and to estimate their shapes using radar polarization measurements is discussed. It is shown that elevation angle dependencies of radar depolarization ratios can be used to distinguish between planar crystals, columnar crystals, and aggregates in reasonably homogeneous stratiform clouds. Absolute values of these ratios depend on the reflectivity-weighted mean particle aspect ratio in the polarization plane. Circular depolarization ratios depend on this ratio, and linear depolarization ratios depend on this ratio and particle orientation in the polarization plane. The use of nearly circular elliptical polarization provides a means of measuring depolarization for low reflectivity scatterers when the circular polarization fails due to low signal level in one of the receiving channels. Modeling of radar backscattering was applied to the elliptical depolarization ratios as measured by the Ka-band radar developed at the NOAA Environmental Technology Laboratory. Experimental data taken during the Winter Icing and Storms Instrument Test experiment in 1993 generally confirmed the calculations and demonstrated the applicability of the approach.

Full access
Roger F. Reinking, Sergey Y. Matrosov, Robert A. Kropfli, and Bruce W. Bartram

Abstract

A remote sensing capability is needed to detect clouds of supercooled, drizzle-sized droplets, which are a major aircraft icing hazard. Discrimination among clouds of differing ice particle types is also important because both the presence and type of ice influence the survival of liquid in a cloud and the chances for occurrence of these large, most hazardous droplets. This work shows how millimeter-wavelength dual-polarization radar can be used to identify these differing hydrometeors. It also shows that by measuring the depolarization ratio (DR), the estimation of the hydrometeor type can be accomplished deterministically for drizzle droplets; ice particles of regular shapes; and to a considerable extent, the more irregular ice particles, and that discrimination is strongly influenced by the polarization state of the transmitted microwave radiation. Thus, appropriate selection of the polarization state is emphasized.

The selection of an optimal polarization state involves trade-offs in competing factors such as the functional dynamic range of DR, sensitivity to low-reflectivity clouds, and insensitivity to oscillations in the settling orientations of ice crystals. A 45° slant, quasi-linear polarization state, one in which only slight ellipticity is introduced, was found to offer a very good compromise, providing considerable advantages over standard horizontal and substantially elliptical polarizations. This was determined by theoretical scattering calculations that were verified experimentally in field measurements conducted during the Mount Washington Icing Sensors Project (MWISP). A selectable-dual-polarization Ka-band (8.66-mm wavelength) radar was used. A wide variety of hydrometeor types was sampled. Clear differentiation among planar crystals, columnar crystals, and drizzle droplets was achieved. Also, differentiation among crystals of fundamentally different shapes (aspect ratios) within each of the planar and columnar families was found possible. These distinctions matched calculations of DR, usually to within 1 or 2 dB. The results from MWISP and from previous experiments with other polarizations have demonstrated that the agreement between theory and measurements by this method is repeatable. Additionally, although less rigorously predicted by theory, the field measurements demonstrated substantial differentiation among the more irregular and more spherical ice particles, including aggregates, elongated aggregates, heavily rimed dendrites, and graupel. Measurable separation between these various irregular ice particle types and drizzle droplets was also verified.

Full access
Sergey Y. Matrosov, Andrew J. Heymsfield, Robert A. Kropfli, Brooks E. Martner, Roger F. Reinking, Jack B. Snider, Paivi Piironen, and Edwin W. Eloranta

Abstract

Ice cloud microphysical parameters derived from a remote sensing method that uses ground-based measurements from the Environmental Technology Laboratory’s Ka-band radar and an IR radiometer are compared to those obtained from aircraft sampling for the cirrus priority event from the FIRE-II experiment. Aircraft cloud samples were taken not only by traditional two-dimensional probes but also by using a new video sampler to account for small particles. The cloud parameter comparisons were made for time intervals when aircraft were passing approximately above ground-based instruments that were pointed vertically. Comparing characteristic particle sizes expressed in terms of median mass diameters of equal-volume spheres yielded a relative standard deviation of about 30%. The corresponding standard deviation for the cloud ice water content comparisons was about 55%. Such an agreement is considered good given uncertainties of both direct and remote approaches and several orders of magnitude in natural variability of ice cloud parameters. Values of reflectivity measured by the radar and calculated from aircraft samples also showed a reasonable agreement; however, calculated reflectivities averaged approximately 2 dB smaller than those measured. The possible reasons for this small bias are discussed. Ground-based and aircraft-derived particle characteristic sizes are compared to those available from published satellite measurements of this parameter for the cirrus priority case from FIRE-II. Finally, simultaneous and collocated, ground-based measurements of visible (0.523 nm) and longwave IR (10–11.4 μm) ice cloud extinction optical thickness obtained during the 1995 Arizona Program are also compared. These comparisons, performed for different cloud conditions, revealed a relative standard deviation of less than 20%;however, no systematic excess of visible extinction over IR extinction was observed in the considered experimental events.

Full access
Bruce A. Boe, Jeffrey L. Stith, Paul L. Smith, John H. Hirsch, John H. Helsdon Jr., Andrew G. Detwiler, Harold D. Orville, Brooks E. Mariner, Roger F. Reinking, Rebecca J. Meitín, and Rodger A. Brown

The North Dakota Thunderstorm Project was conducted in the Bismarck, North Dakota, area from 12 June through 22 July 1989. The project deployed Doppler radars, cloud physics aircraft, and supporting instrumentation to study a variety of aspects of convective clouds. These included transport and dispersion; entrainment; cloud-ice initiation and evolution; storm structure, dynamics, and kinematics; atmospheric chemistry; and electrification.

Of primary interest were tracer experiments that identified and tracked specific regions within evolving clouds as a means of investigating the transport, dispersion, and activation of ice-nucleating agents as well as studying basic transport and entrainment processes. Tracers included sulfur hexafluoride (SF6), carbon monoxide, ozone, radar chaff, and silver iodide.

Doppler radars were used to perform studies of all scales of convection, from first-echo cases to a mesoscale convective system. An especially interesting dual-Doppler study of two splitting thunderstorms has resulted.

The objectives of the various project experiments and the specific facilities employed are described. Project highlights and some preliminary results are also presented.

Full access
Brian A. Klimowski, Robert Becker, Eric A. Betterton, Roelof Bruintjes, Terry L. Clark, William D. Hall, Brad W. Orr, Robert A. Kropfli, Paivi Piironen, Roger F. Reinking, Dennis Sundie, and Taneil Uttal

The 1995 Arizona Program was a field experiment aimed at advancing the understanding of winter storm development in a mountainous region of central Arizona. From 15 January through 15 March 1995, a wide variety of instrumentation was operated in and around the Verde Valley southwest of Flagstaff, Arizona. These instruments included two Doppler dual-polarization radars, an instrumented airplane, a lidar, microwave and infrared radiometers, an acoustic sounder, and other surface-based facilities. Twenty-nine scientists from eight institutions took part in the program. Of special interest was the interaction of topographically induced, storm-embedded gravity waves with ambient upslope flow. It is hypothesized that these waves serve to augment the upslope-forced precipitation that falls on the mountain ridges. A major thrust of the program was to compare the observations of these winter storms to those predicted with the Clark-NCAR 3D, nonhydrostatic numerical model.

Full access
Roger F. Reinking, Roger Caiazza, Robert A. Kropfli, Brad W. Orr, Brooks E. Martner, Thomas A. Niziol, Gregory P. Byrd, Richard S. Penc, Robert J. Zamora, Jack B. Snider, Robert J. Ballentine, Alfred J. Stamm, Christopher D. Bedford, Paul Joe, and Albert J. Koscielny

Snowstorms generated over the Great Lakes bring localized heavy precipitation, blizzard conditions, and whiteouts to downwind shores. Hazardous freezing rain often affects the same region in winter. Conventional observations and numerical models generally are resolved too coarsely to allow detection or accurate prediction of these mesoscale severe weather phenomena. The Lake Ontario Winter Storms (LOWS) project was conducted to demonstrate and evaluate the potential for real-time mesoscale monitoring and location-specific prediction of lake-effect storms and freezing rain, using the newest of available technologies. LOWS employed an array of specialized atmospheric remote sensors (a dual-polarization short wavelength radar, microwave radiometer, radio acoustic sounding system, and three wind profilers) with supporting observing systems and mesoscale numerical models. An overview of LOWS and its initial accomplishments is presented.

Full access