Search Results

You are looking at 11 - 20 of 27 items for

  • Author or Editor: Roy W. Spencer x
  • Refine by Access: All Content x
Clear All Modify Search
Roy W. Spencer
and
John R. Christy

Abstract

Microwave Sounding Unit channel 4 data from the TIROS-N series of NOAA satellites are intercalibrated to provide a continuous global record of deep-layer averaged lower stratospheric temperatures during 1979–1991. A 13-year record of temperature anomalies is time averaged into pentads and months on a 2.5° grid. The monthly gridpoint anomalies are validated with ten years of radiosonde data during 1979–88. The calibration stability of each satellite's measurements is evaluated during satellite overlap periods, the longest of which reveal no measurable instrumental drift at the level of 0.01°C yr−1. Intercomparisons between NOAA-6 and NOAA-7 anomalies indicate monthly gridpoint precision of 0.05°C in the tropics to around 0.10°C in the extratropies, and signal-to-noise ratios generally over 500, while global monthly precision is 0.01° to 0.02°C. These precision and stability statistics are much better than have been previously reported by other investigators for MSU channel 4. Pentad precision is about 0.10°C in the tropics to around 0.25°C at high latitudes and signal-to- noise ratios generally over 250 in the tropics and high latitude but 100–200 in the middle latitudes. Radiosonde comparisons to the monthly gridpoint anomalies have correlations ranging from 0.90 in the tropics (when the interannual variability is smallest) to as high as 0.99 at high-latitude stations. The corresponding standard error of estimate is generally around 0.3°C.

A significant difference in decadal trends is found between the satellite and radiosonde systems, with a step change of 0.217°C (sondes cooler) compared to the satellite measurements. Investigations of the possible sources of the discrepancy lead us to suspect that the gradual transition from on-site calibration of sondes with thermometers to factory calibration of sondes around 1982 might have caused a change in the calibration, although this conclusion must be viewed as tentative.

The largest globally averaged temperature variations during 1979–91 occur after the El Chichón (1982) and Pinatubo (1991) volcanic eruptions. These warm events are superimposed upon a net downward trend in temperatures during the period. This cooling trend has more of a step function than linear character, with the step occurring during the El Chichón warm event. It is strongest in polar regions and the Northern Hemisphere middle latitudes. These characteristics are qualitatively consistent with radiative adjustments expected to occur with observed ozone depictions.

Full access
Roy W. Spencer
and
William D. Braswell

The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general circulation models (GCMs). Because the loss of infrared energy to space increases nonlinearly with decreases in relative humidity, the vast dry zones in the Tropics are of particular interest. These dry zones are nearly devoid of radiosonde stations, and most of those stations have, until recently, ignored the low humidity information from the sondes. This results in substantial uncertainty in GCM tuning and validation based on sonde data. While satellite infrared radiometers are now beginning to reveal some information about the aridity of the tropical free troposphere, the authors show that the latest microwave humidity sounder data suggests even drier conditions than have been previously reported. This underscores the importance of understanding how these low humidity levels are controlled in order to tune and validate GCMs, and to predict the magnitude of water vapor feedback and thus the magnitude of global warming.

Full access
Keiji Imaoka
and
Roy W. Spencer

Abstract

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) data are used in this study as the first passive microwave information from a precessing orbit to reveal diurnal variations of precipitation over the tropical oceans (30°S–30°N). Data from three Special Sensor Microwave Imagers are combined to help alleviate the aliasing problem caused by the slow diurnal sampling of the TRMM satellite. Annual mean diurnal variations of rainfall in 1998 are presented for 10° latitude bands and six regions. The diurnal variation over all the tropical oceans exhibits an amplitude of about ±14% of the mean, and it peaks near dawn (approximately 0400–0700 LST). By latitude band, diurnal variation is most evident in the deep Tropics, while the ratio of the amplitude over the mean is relatively constant over most latitude bands. Other than in the early morning, there are no evident peaks exceeding the error bars for this analysis. By region, the coastal areas where the ITCZ intersects large continents and around the Maritime Continent are dominant. The morning preference of rainfall prevails almost everywhere in the open ocean where the mean rainfall is heavy, even though the amplitude is small compared to that near the continents.

Full access
Roy W. Spencer
,
William M. Lapenta
, and
Franklin R. Robertson

Abstract

Spatial fields of satellite-measured deep-layer temperatures are examined in the context of quasigeostrophic theory. It is found that midtropospheric geostrophic vorticity and quasigeostrophic vertical motions can be diagnosed from microwave temperature measurements of only two deep layers. The lower- (1000–400 hPa) and upper- (400–50 hPa) layer temperatures are estimated from limb-corrected TIROS-N Microwave Sounding Units (MSU) channel 2 and 3 data, spatial fields of which can be used to estimate the midtropospheric thermal wind and geostrophic vorticity fields. Together with Trenberth's simplification of the quasigeostrophic omega equation, these two quantities can be then used to estimate the geostrophic vorticity advection by the thermal wind, which is related to the quasigeostrophic vertical velocity in the midtroposphere.

Critical to the technique is the observation that geostrophic vorticity fields calculated from the channel 3 temperature features are very similar to those calculated from traditional, “bottom-up” integrated height fields from radiosonde data. This suggests a lack of cyclone-scale height features near the top of the channel 3 weighting function, making the channel 3 cyclone-scale “thickness” features approximately the same as height features near the bottom of the weighting function. Thus, the MSU data provide observational validation of the LID (level of insignificant dynamics) assumption of Hirshberg and Fritsch.

Full access
Roy W. Spencer
,
Barry B. Hinton
, and
William S. Olson

Abstract

In a comparison between 37 GHz brightness temperatures from the Nimbus 7 Scanning Multichannel Microwave Radiometer and rain rates derived from the WSR-57 radars at Galveston, Texas and Apalachicola, Florida, it was found that the brightness temperatures explained 72% of the variance of the rain rates. The functional form relating these two types of data was significantly different from that predicted by models of radiative transfer through plane-parallel clouds. Most of the difference can be explained in terms of the partial coverage of footprints by convective showers. Because residual polarization is always present, even for large obscuring storms over land and water, it is hypothesized that emission by nonspherical hydrometeors is at least partly responsible for the observed polarization.

Full access
Roy W. Spencer
,
Michael R. Howland
, and
David A. Santek

Abstract

In an attempt to determine the feasibility of detecting and monitoring severe weather with future satellite passive microwave observations, the severe weather characteristics of convective storms as observed by the Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) are investigated. Low 37 GHz brightness temperatures (due to scattering of upwelling radiation by precipitation size ice) were related to the occurrence of severe weather (large hail, strong winds or wind damage, tornados and funnel clouds) within one hour of the satellite observation time. During 1979 and 1980 over the study area within the United States, there were 263 storms that had cold 37 GHz signatures. Of these storms, 15 percent were reported as severe. The relative number of storms falling in hail, wind, or tornadic categories did not differ from those expected climatologically. Critical Success Indices (CSIs) of 0.32, 0.48 and 0.38 were achieved for the low brightness temperature thresholding of severe versus nonsevere storms during 1979, 1980 and the two years combined, respectively. The preliminary indication is that a future geostationary passive microwave imaging capability at 37 GHz (or possibly higher frequencies), with sufficient spatial and temporal resolution, would facilitate the detection and monitoring of severe convective storms. This capability would provide a useful complement to radar, especially over most of the globe which is not covered by radar.

Full access
Roy W. Spencer
,
H. Michael Goodman
, and
Robbie E. Hood

Abstract

The subject of this study is the identification of precipitation in warm and cold land and ocean environments from the Defense Meteorological Satellite Program's (DMSP) Special Sensor Micmwave/Imager (SSM/I). The high sensitivity of the SSM/I 85.5 GHz channels to volume scattering by precipitation, especially ice above the freezing level, is the basis for this identification. This ice scattering process causes SSM/I 85.5 GHz brightness temperatures to occasionally fall below 100 K. It is demonstrated that the polarization diversity available at 85.5 GHz from the SSM/I allows discrimination between low brightness temperatures due to surface water bodies versus those due to precipitation. An 85.5 GHz polarization corrected temperature (PCT) is formulated to isolate the precipitation effect. A PCT threshold of 255 K is suggested for the delineation of precipitation. This threshold is shown to be lower than what would generally be expected from nonprecipitating cloud water alone, yet high enough to sense relatively light precipitation rates. Based upon aircraft radiometric measurements compared with radar derived rain rates, as well as model calculations, the corresponding average rain rate threshold is approximately 1–3 mm h−1. The majority of precipitation that falls on the earth exceeds this rate.

Because the 85.5 GHz measurements of oceanic storms are often dominated by scattering due to precipitation above the freezing level, while the 19.35 GHz radiances are dominated by emission due to rain below the freezing level, there is independent information about the gross vertical structure of oceanic precipitation systems from the SSM/I. Apparent differences between storms in formative, mature, and dissipating stages are inferred from the diagnosed amounts of ice versus raindrops, and supported by time lapse GOES imagery. Deviations from the average relationship between 19.35 GHz warming and 85.5 GHz cooling are suggested for use as a diagnostic tool to evaluate lower level rain/upper level ice relative abundances. As an example of this capability, overrunning precipitation shows a horizontal offset between the advancing ice layer and the trailing rain area, consistent with idealized conceptual models of warm frontal precipitation.

Part II of this study will address global screening for the precipitation scattering signal, its statistical characteristics, and the false rain signatures frequently caused by snow cover and cold land.

Full access
John R. Christy
,
Roy W. Spencer
, and
Richard T. McNider

Abstract

The daily global-mean values of the lower-tropospheric temperature determined from microwave emissions measured by satellites are examined in terms of their signal, noise, and signal-to-noise ratio. Daily and 30-day average noise estimates are reduced by almost 50% and 35%, respectively, by analysing and adjusting (if necessary) for errors due to 1) missing data, 2) residual harmonics of the annual cycle unique to particular satellites, 3) lack of filtering, and 4) spurious trends. After adjustments, the decadal trend of the lower-tropospheric global temperature from January 1979 through February 1994 becomes −0.058°C, or about 0.03°C per decade cooler than previously calculated.

Full access
Roy W. Spencer
,
John R. Christy
, and
Norman C. Grody

Abstract

A method for measuring global atmospheric temperature anomalies to a high level of precision from satellites is demonstrated. Global data from the Microwave Sounding Units (MSUs), flying on NOAA satellites since late 1978, have been analysed to determine the extent to which these data can reveal atmospheric temperature anomalies on bidaily and longer time scales for regional and larger space scales. The global sampling provided by the MSUs is an important asset, with most of the earth sampled bidaily from each of (typically) two instruments flying concurrently on separate satellites at different solar times. The primary source of tropospheric thermal information is from the MSU 53.74 GHz channel. This channel is primarily sensitive to thermal emission from molecular oxygen in the middle troposphere, with relatively little sensitivity to water vapor, the earth's surface, and cloud (especially cirrus) variations. The long-term stability of the oxygen mixing ratio in the atmosphere makes it an ideal tracer for climate monitoring purposes. Lower stratospheric temperature anomalies are derived from the MSU 57.95 GHz channel.

Comparisons between monthly MSU temperature anomalies and corresponding thermometer-measured anomalies for the United States reveal a high (0.9) correlation, but hemispheric anomalies show much lower correlations. This results from some combination of poor thermometer sampling of remote regions and weak coupling of surface and deep-tropospheric temperature anomalies in tropical areas.

Analysis of data from two of the MSUs (on NOAA-6 and NOAA-7), whose operational periods overlapped by two years, reveals that hemispheric temperature anomalies measured by the separate instruments are very similar (to about 0.01°C) on monthly time scales. Their combined time series of unfiltered two-day hemispheric averages show standard deviations of their mean of 0.15°–0.20°C and standard deviations of their average difference of 0.02°–0.03°C, indicating a signal-to-noise ratio of 40 for the Southern Hemisphere and 45 for the Northern Hemisphere. The intercomparison period also reveals no evidence of calibration drift between satellites at the 0.01°C level. This was substantiated by two 15-month comparisons of NOAA-6 with rawinsonde data from 45 stations in the eastern United States, which revealed 0.013°C net difference over five years. Monthly averaged comparisons between individual rawinsonde and NOAA-6 data from 1980 through 1982 reveal a monthly standard deviation of their difference of 0.04°C. The statistical and geophysical portions of this noise are found to be about equal in magnitude, 0.03°C. The single-satellite noise due to imperfect sampling for ten-day, 2.5° gridpoint temperatures was calculated by measuring the standard deviation of the difference between two satellites with ranges from 0.2°C in the tropics to 0.4°C in middle latitudes.

The period of analysis (1979–84) reveals that Northern and Southern hemispheric tropospheric temperature anomalies (from the six-year mean) am positively correlated on multiseasonal time scales but negatively correlated on shorter time scales. The 1983 ENSO dominates the record, with early 1983 zonally averaged tropical temperatures up to 0.6°C warmer than the average of the remaining years. These natural variations are much larger than that expected of greenhouse enhancements, and so it is likely that a considerably longer period of satellite record must accumulate for any longer-term trends to be revealed.

Full access
John R. Christy
,
Roy W. Spencer
, and
William D. Braswell

Abstract

Two deep-layer tropospheric temperature products, one for the lower troposphere (T2LT) and one for the midtroposphere (T2, which includes some stratospheric emissions), are based on the observations of channel 2 of the microwave sounding unit on National Oceanic and Atmospheric Administration (NOAA) polar-orbiting satellites. Revisions to version C of these datasets have been explicitly applied to account for the effects of orbit decay (loss of satellite altitude) and orbit drift (east–west movement). Orbit decay introduces an artificial cooling in T2LT, while the effects of orbit drift introduce artificial warming in both T2LT and T2. The key issues for orbit drift are 1) accounting for the diurnal cycle and 2) the adjustment needed to correct for spurious effects related to the temperature of the instrument. In addition, new calibration coefficients for NOAA-12 have been applied. The net global effect of these revisions (version D) is small, having little impact on the year-to-year anomalies. The change in global trends from C to D for 1979–98 for T2LT is an increase from +0.03 to +0.06 K decade−1, and a decrease for T2 from +0.08 to +0.04 K decade−1.

Full access