Search Results

You are looking at 11 - 20 of 26 items for

  • Author or Editor: S. C. Pryor x
  • Refine by Access: All Content x
Clear All Modify Search
S. C. Pryor
,
F. Letson
,
T. Shepherd
, and
R. J. Barthelmie

Abstract

The Southern Great Plains (SGP) region exhibits a relatively high frequency of periods with extremely high rainfall rates (RR) and hail. Seven months of 2017 are simulated using the Weather Research and Forecasting (WRF) Model applied at convection-permitting resolution with the Milbrandt–Yau microphysics scheme. Simulation fidelity is evaluated, particularly during intense convective events, using data from ASOS stations, dual-polarization radar, and gridded datasets and observations at the DOE Atmospheric Radiation Measurement site. The spatial gradients and temporal variability of precipitation and the cumulative density functions for both RR and wind speeds exhibit fidelity. Odds ratios > 1 indicate that WRF is also skillful in simulating high composite reflectivity (cREF, used as a measure of widespread convection) and RR > 5 mm h−1 over the domain. Detailed analyses of the 10 days with highest spatial coverage of cREF > 30 dBZ show spatially similar reflectivity fields and high RR in both radar data and WRF simulations. However, during periods of high reflectivity, WRF exhibits a positive bias in terms of very high RR (>25 mm h−1) and hail occurrence, and during the summer and transition months, maximum hail size is underestimated. For some renewable energy applications, fidelity is required with respect to the joint probabilities of wind speed and RR and/or hail. While partial fidelity is achieved for the marginal probabilities, performance during events of critical importance to these energy applications is currently not sufficient. Further research into optimal WRF configurations in support of potential damage quantification for these applications is warranted.

Significance Statement

Heavy rainfall and hail during convective events are challenging for numerical models to simulate in both space and time. For some applications, such as to estimate damage to wind turbine blades and solar panels, fidelity is also required with respect to hail size and joint probabilities of wind speed and hydrometeor type and rainfall rates (RR). This demands fidelity that is seldom evaluated. We show that, although this simulation exhibits fidelity for the marginal probabilities of wind speed, RR, and hail occurrence, the joint probabilities of these properties and the simulation of maximum size of hail are, as yet, not sufficient to characterize potential damage to these renewable energy industries.

Restricted access
J. T. Schoof
,
T. W. Ford
, and
S. C. Pryor

Abstract

Humidity is a key determinant of heat wave impacts, but studies investigating changes in extreme heat events have not differentiated between events characterized by high temperatures and those characterized by simultaneously elevated temperature and humidity. The authors present a framework, using air temperature (T) and equivalent temperature (T E ; a measure combining temperature and specific humidity), to examine changes in local percentile-based extreme heat events characterized by high temperature (T only) and those with high temperature and humidity (T-and-T E events). Application to one observational dataset (PRISM), four reanalysis products (1981–2015), and seven U.S. regions reveals widespread changes in heat wave characteristics over the 35-yr period. Agreement among the datasets employed on several heat wave metrics suggests that many of the findings are robust. With the exception of the northern plains region, all regions experienced increases in both T-only and T-and-T E heat wave day (HWD) frequency in each of the reanalyses. In the northern plains, all datasets have negative trends in T-only HWD frequency and positive trends in T-and-T E HWD frequency. Trends in HWD frequency were generally accompanied by changes in the spatial footprint in heat wave conditions. Temperature has increased significantly during T-only HWDs in the western regions, while increases in T E during T-and-T E HWDs have occurred in the central United States and Northeast region. These findings suggest that equivalent temperature provides an alternative perspective on the evolution of regional heat wave climatology. Studies considering changes in regional heat wave impacts should carefully consider the role of atmospheric moisture.

Full access
W. Hu
,
F. Letson
,
R. J. Barthelmie
, and
S. C. Pryor

Abstract

Improved understanding of wind gusts in complex terrain is critically important to wind engineering and specifically the wind energy industry. Observational data from 3D sonic anemometers deployed at 3 and 65 m at a site in moderately complex terrain within the northeastern United States are used to calculate 10 descriptors of wind gusts and to determine the parent distributions that best describe these parameters. It is shown that the parent distributions exhibit consistency across different descriptors of the gust climate. Specifically, the parameters that describe the gust intensity (gust amplitude, rise magnitude, and lapse magnitude; i.e., properties that have units of length per time) fit the two-parameter Weibull distribution, those that are unitless ratios (gust factor and peak factor) are described by log-logistic distributions, and all other properties (peak gust, rise and lapse times, gust asymmetric factor, and gust length scale) are lognormally distributed. It is also shown that gust factors scale with turbulence intensity, but gusts are distinguishable in power spectra of the longitudinal wind component (i.e., they have demonstrably different length scales than the average eddy length scale). Gust periods at the lower measurement height (3 m) are consistent with shear production, whereas at 65 m they are not. At this site, there is only a weak directional dependence of gust properties on site terrain and land cover variability along sectorial transects, but large gust length scales and gust factors are more likely to be observed in unstable atmospheric conditions.

Full access
H. Wang
,
R. J. Barthelmie
,
A. Clifton
, and
S. C. Pryor

Abstract

Defining optimal scanning geometries for scanning lidars for wind energy applications remains an active field of research. This paper evaluates uncertainties associated with arc scan geometries and presents recommendations regarding optimal configurations in the atmospheric boundary layer. The analysis is based on arc scan data from a Doppler wind lidar with one elevation angle and seven azimuth angles spanning 30° and focuses on an estimation of 10-min mean wind speed and direction. When flow is horizontally uniform, this approach can provide accurate wind measurements required for wind resource assessments in part because of its high resampling rate. Retrieved wind velocities at a single range gate exhibit good correlation to data from a sonic anemometer on a nearby meteorological tower, and vertical profiles of horizontal wind speed, though derived from range gates located on a conical surface, match those measured by mast-mounted cup anemometers. Uncertainties in the retrieved wind velocity are related to high turbulent wind fluctuation and an inhomogeneous horizontal wind field. The radial velocity variance is found to be a robust measure of the uncertainty of the retrieved wind speed because of its relationship to turbulence properties. It is further shown that the standard error of wind speed estimates can be minimized by increasing the azimuthal range beyond 30° and using five to seven azimuth angles.

Full access
S. C. Pryor
,
R. Conrick
,
C. Miller
,
J. Tytell
, and
R. J. Barthelmie

Abstract

The scale and intensity of extreme wind events have tremendous relevance to determining the impact on infrastructure and natural and managed ecosystems. Analyses presented herein show the following. 1) Wind speeds in excess of the station-specific 95th percentile are coherent over distances of up to 1000 km over the eastern United States, which implies that the drivers of high wind speeds are manifest at the synoptic scale. 2) Although cold fronts associated with extratropical cyclones are a major cause of high–wind speed events, maximum sustained and gust wind speeds are only weakly dependent on the near-surface horizontal temperature gradient across the front. 3) Gust factors (GF) over the eastern United States have a mean value of 1.57 and conform to a lognormal probability distribution, and the relationship between maximum observed GF and sustained wind speed conforms to a power law with coefficients of 5.91 and −0.499. Even though there is coherence in the occurrence of intense wind speeds at the synoptic scale, the intensity and spatial extent of extreme wind events are not fully characterized even by the dense meteorological networks deployed by the National Weather Service. Seismic data from the USArray, a program within the Earthscope initiative, may be suitable for use in mapping high-wind and gust events, however. It is shown that the seismic channels exhibit well-defined spectral signatures under conditions of high wind, with a variance peak at frequencies of ~0.04 s−1 and an amplitude that appears to scale with the magnitude of observed wind gusts.

Full access
F. Letson
,
T. J. Shepherd
,
R. J. Barthelmie
, and
S. C. Pryor

Abstract

Deep convection and the related occurrence of hail, intense precipitation, and wind gusts represent a hazard to a range of energy infrastructure including wind turbine blades. Wind turbine blade leading-edge erosion (LEE) is caused by the impact of falling hydrometeors onto rotating wind turbine blades. It is a major source of wind turbine maintenance costs and energy losses from wind farms. In the U.S. southern Great Plains (SGP), where there is widespread wind energy development, deep convection and hail events are common, increasing the potential for precipitation-driven LEE. A 25-day Weather Research and Forecasting (WRF) Model simulation conducted at convection-permitting resolution and using a detailed microphysics scheme is carried out for the SGP to evaluate the effectiveness in modeling the wind and precipitation conditions relevant to LEE potential. WRF output for these properties is evaluated using radar observations of precipitation (including hail) and reflectivity, in situ wind speed measurements, and wind power generation. This research demonstrates some skill for the primary drivers of LEE. Wind speeds, rainfall rates, and precipitation totals show good agreement with observations. The occurrence of precipitation during power-producing wind speeds is also shown to exhibit fidelity. Hail events frequently occur during periods when wind turbines are rotating and are especially important to LEE in the SGP. The presence of hail is modeled with a mean proportion correct of 0.77 and an odds ratio of 4.55. Further research is needed to demonstrate sufficient model performance to be actionable for the wind energy industry, and there is evidence for positive model bias in cloud reflectivity.

Free access
Melissa S. Bukovsky
,
William Gutowski
,
Linda O. Mearns
,
Dominique Paquin
, and
Sara C. Pryor
Open access
S. C. Pryor
,
J. J. Coburn
,
R. J. Barthelmie
, and
T. J. Shepherd

Abstract

New simulations at 12-km grid spacing with the Weather and Research Forecasting (WRF) Model nested in the MPI Earth System Model (ESM) are used to quantify possible changes in wind power generation potential as a result of global warming. Annual capacity factors (CF; measures of electrical power production) computed by applying a power curve to hourly wind speeds at wind turbine hub height from this simulation are also used to illustrate the pitfalls in seeking to infer changes in wind power generation directly from low-spatial-resolution and time-averaged ESM output. WRF-derived CF are evaluated using observed daily CF from operating wind farms. The spatial correlation coefficient between modeled and observed mean CF is 0.65, and the root-mean-square error is 5.4 percentage points. Output from the MPI-WRF Model chain also captures some of the seasonal variability and the probability distribution of daily CF at operating wind farms. Projections of mean annual CF (CF A ) indicate no change to 2050 in the southern Great Plains and Northeast. Interannual variability of CF A increases in the Midwest, and CF A declines by up to 2 percentage points in the northern Great Plains. The probability of wind droughts (extended periods with anomalously low production) and wind bonus periods (high production) remains unchanged over most of the eastern United States. The probability of wind bonus periods exhibits some evidence of higher values over the Midwest in the 2040s, whereas the converse is true over the northern Great Plains.

Significance Statement

Wind energy is playing an increasingly important role in low-carbon-emission electricity generation. It is a “weather dependent” renewable energy source, and thus changes in the global atmosphere may cause changes in regional wind power production (PP) potential. We use PP data from operating wind farms to demonstrate that regional simulations exhibit skill in capturing actual power production. Projections to the middle of this century indicate that over most of North America east of the Rocky Mountains annual expected PP is largely unchanged, as is the probability of extended periods of anomalously high or low production. Any small declines in annual PP are of much smaller magnitude than changes due to technological innovation over the last two decades.

Restricted access
R. J. Barthelmie
,
G. C. Larsen
,
S. T. Frandsen
,
L. Folkerts
,
K. Rados
,
S. C. Pryor
,
B. Lange
, and
G. Schepers

Abstract

This paper gives an evaluation of most of the commonly used models for predicting wind speed decrease (wake) downstream of a wind turbine. The evaluation is based on six experiments where free-stream and wake wind speed profiles were measured using a ship-mounted sodar at a small offshore wind farm. The experiments were conducted at varying distances between 1.7 and 7.4 rotor diameters downstream of the wind turbine. Evaluation of the models compares the predicted and observed velocity deficits at hub height. A new method of evaluation based on determining the cumulative momentum deficit over the profiles is described. Despite the apparent simplicity of the experiments, the models give a wide range of predictions. Overall, it is not possible to establish any of the models as having individually superior performance with respect to the measurements.

Full access
R. J. Barthelmie
,
S. C. Pryor
,
S. T. Frandsen
,
K. S. Hansen
,
J. G. Schepers
,
K. Rados
,
W. Schlez
,
A. Neubert
,
L. E. Jensen
, and
S. Neckelmann

Abstract

There is an urgent need to develop and optimize tools for designing large wind farm arrays for deployment offshore. This research is focused on improving the understanding of, and modeling of, wind turbine wakes in order to make more accurate power output predictions for large offshore wind farms. Detailed data ensembles of power losses due to wakes at the large wind farms at Nysted and Horns Rev are presented and analyzed. Differences in turbine spacing (10.5 versus 7 rotor diameters) are not differentiable in wake-related power losses from the two wind farms. This is partly due to the high variability in the data despite careful data screening. A number of ensemble averages are simulated with a range of wind farm and computational fluid dynamics models and compared to observed wake losses. All models were able to capture wake width to some degree, and some models also captured the decrease of power output moving through the wind farm. Root-mean-square errors indicate a generally better model performance for higher wind speeds (10 rather than 6 m s−1) and for direct down the row flow than for oblique angles. Despite this progress, wake modeling of large wind farms is still subject to an unacceptably high degree of uncertainty.

Full access