Search Results
You are looking at 11 - 20 of 34 items for
- Author or Editor: Samson Hagos x
- Refine by Access: All Content x
Abstract
The frequency of North Pacific atmospheric rivers (ARs) affects water supply and flood risk over western North America. Thus, understanding factors that affect the variability of landfalling AR frequency is of scientific and societal importance. This study aims at identifying the sources of the moisture for North Pacific ARs and assessing how different modes of variability modulate these sources. To this end, the sources and variability of the background divergent component of the integrated moisture flux (DIVT) in ARs are identified using MERRA reanalysis. It is shown that in the boreal winter, this background DIVT in ARs is related to the outflow from the subsidence over the subtropics that transports moisture northward, while in summer it is related to the Asian monsoon and it transports moisture northwestward. This leads to a seasonal northwest–southeast movement of the AR frequency climatology. At the intraseasonal scale, propagation of the Madden–Julian oscillation introduces an anticlockwise rotation of the background DIVT, with northward transport in phases 1 and 2, westward in 3 and 4, southward in 5 and 6, and eastward in 7 and 8, making landfall over the west coast of North America most likely during the last two phases. Similarly, El Niño–Southern Oscillation variability also affects the frequency of ARs through modulation of the westerly background DIVT, favoring landfall over the U.S. West Coast during strong El Niño phases. It is shown that in general the likelihood of AR landfall over the western United States is correlated with the zonal background DIVT over northeastern Pacific.
Abstract
The frequency of North Pacific atmospheric rivers (ARs) affects water supply and flood risk over western North America. Thus, understanding factors that affect the variability of landfalling AR frequency is of scientific and societal importance. This study aims at identifying the sources of the moisture for North Pacific ARs and assessing how different modes of variability modulate these sources. To this end, the sources and variability of the background divergent component of the integrated moisture flux (DIVT) in ARs are identified using MERRA reanalysis. It is shown that in the boreal winter, this background DIVT in ARs is related to the outflow from the subsidence over the subtropics that transports moisture northward, while in summer it is related to the Asian monsoon and it transports moisture northwestward. This leads to a seasonal northwest–southeast movement of the AR frequency climatology. At the intraseasonal scale, propagation of the Madden–Julian oscillation introduces an anticlockwise rotation of the background DIVT, with northward transport in phases 1 and 2, westward in 3 and 4, southward in 5 and 6, and eastward in 7 and 8, making landfall over the west coast of North America most likely during the last two phases. Similarly, El Niño–Southern Oscillation variability also affects the frequency of ARs through modulation of the westerly background DIVT, favoring landfall over the U.S. West Coast during strong El Niño phases. It is shown that in general the likelihood of AR landfall over the western United States is correlated with the zonal background DIVT over northeastern Pacific.
Abstract
Radar-based latent heating retrievals typically apply a lookup table (LUT) derived from model output to surface rain amounts and rain type to determine the vertical structure of heating. In this study, a method has been developed that uses the size characteristics of precipitating systems (i.e., area and mean echo-top height) instead of rain amount to estimate latent heating profiles from radar observations. This technique [named the convective–stratiform area (CSA) algorithm] leverages the relationship between the organization of convective systems and the structure of latent heating profiles and avoids pitfalls associated with retrieving accurate rainfall information from radars and models. The CSA LUTs are based on a high-resolution regional model simulation over the equatorial Indian Ocean. The CSA LUTs show that convective latent heating increases in magnitude and height as area and echo-top heights grow, with a congestus signature of midlevel cooling for less vertically extensive convective systems. Stratiform latent heating varies weakly in vertical structure, but its magnitude is strongly linked to area and mean echo-top heights. The CSA LUT was applied to radar observations collected during the DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/ARM MJO Investigation Experiment (AMIE) field campaign, and the CSA heating retrieval was generally consistent with other measures of heating profiles. The impact of resolution and spatial mismatch between the model and radar grids is addressed, and unrealistic latent heating profiles in the stratiform LUT, namely, a low-level heating peak, an elevated melting layer, and net column cooling, were identified. These issues highlight the need for accurate convective–stratiform separations and improvement in PBL and microphysical parameterizations.
Abstract
Radar-based latent heating retrievals typically apply a lookup table (LUT) derived from model output to surface rain amounts and rain type to determine the vertical structure of heating. In this study, a method has been developed that uses the size characteristics of precipitating systems (i.e., area and mean echo-top height) instead of rain amount to estimate latent heating profiles from radar observations. This technique [named the convective–stratiform area (CSA) algorithm] leverages the relationship between the organization of convective systems and the structure of latent heating profiles and avoids pitfalls associated with retrieving accurate rainfall information from radars and models. The CSA LUTs are based on a high-resolution regional model simulation over the equatorial Indian Ocean. The CSA LUTs show that convective latent heating increases in magnitude and height as area and echo-top heights grow, with a congestus signature of midlevel cooling for less vertically extensive convective systems. Stratiform latent heating varies weakly in vertical structure, but its magnitude is strongly linked to area and mean echo-top heights. The CSA LUT was applied to radar observations collected during the DYNAMO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (CINDY2011)/ARM MJO Investigation Experiment (AMIE) field campaign, and the CSA heating retrieval was generally consistent with other measures of heating profiles. The impact of resolution and spatial mismatch between the model and radar grids is addressed, and unrealistic latent heating profiles in the stratiform LUT, namely, a low-level heating peak, an elevated melting layer, and net column cooling, were identified. These issues highlight the need for accurate convective–stratiform separations and improvement in PBL and microphysical parameterizations.
Abstract
By applying a cloud-tracking algorithm to tropical convective systems in a regional high-resolution model simulation, this study documents the environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various mechanisms of convection–environment interaction on the longevity of convective systems are quantified. The statistics of lifetime, maximum area, and propagation speed of the simulated deep convection agree well with geostationary satellite observations.
Among the environmental variables considered, lifetime of convective systems is found to be most related to midtropospheric moisture before as well as after the initiation of convection. Over ocean, convective systems enhance surface fluxes through the associated cooling and drying of the boundary layer as well as increased wind gusts. This process appears to play a minor positive role in the longevity of systems. For systems of equal lifetime, those over land tend to be more intense than those over ocean especially during the early stages of their life cycle. Both over ocean and land, convection is found to transport momentum vertically to increase low-level shear and decrease upper-level shear, but no discernible effect of shear on the lifetime of the convective systems is found.
Abstract
By applying a cloud-tracking algorithm to tropical convective systems in a regional high-resolution model simulation, this study documents the environmental conditions before and after convective systems are initiated over ocean and land by following them during their lifetime. The comparative roles of various mechanisms of convection–environment interaction on the longevity of convective systems are quantified. The statistics of lifetime, maximum area, and propagation speed of the simulated deep convection agree well with geostationary satellite observations.
Among the environmental variables considered, lifetime of convective systems is found to be most related to midtropospheric moisture before as well as after the initiation of convection. Over ocean, convective systems enhance surface fluxes through the associated cooling and drying of the boundary layer as well as increased wind gusts. This process appears to play a minor positive role in the longevity of systems. For systems of equal lifetime, those over land tend to be more intense than those over ocean especially during the early stages of their life cycle. Both over ocean and land, convection is found to transport momentum vertically to increase low-level shear and decrease upper-level shear, but no discernible effect of shear on the lifetime of the convective systems is found.
Abstract
This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high-resolution regional climate modeling. The global variable-resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited-area model, Weather Research and Forecasting Model (WRF), are compared in an idealized aquaplanet context. For MPAS-A, simulations have been performed with a quasi-uniform-resolution global domain at coarse (1°) and high (0.25°) resolution, and a variable-resolution domain with a high-resolution region at 0.25° configured inside a coarse-resolution global domain at 1° resolution. Similarly, WRF has been configured to run on a coarse (1°) and high (0.25°) tropical channel domain as well as a nested domain with a high-resolution region at 0.25° nested two-way inside the coarse-resolution (1°) tropical channel. The variable-resolution or nested simulations are compared against the high-resolution simulations. Both models respond to increased resolution with enhanced precipitation and significant reduction in the ratio of convective to nonconvective precipitation. The limited-area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker-like circulations and standing Rossby wave signals. Within the high-resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, the propagation characteristics of equatorial waves are not significantly affected by the variations in resolution.
Abstract
This study compares the error characteristics associated with two grid refinement approaches including global variable resolution and nesting for high-resolution regional climate modeling. The global variable-resolution model, Model for Prediction Across Scales-Atmosphere (MPAS-A), and the limited-area model, Weather Research and Forecasting Model (WRF), are compared in an idealized aquaplanet context. For MPAS-A, simulations have been performed with a quasi-uniform-resolution global domain at coarse (1°) and high (0.25°) resolution, and a variable-resolution domain with a high-resolution region at 0.25° configured inside a coarse-resolution global domain at 1° resolution. Similarly, WRF has been configured to run on a coarse (1°) and high (0.25°) tropical channel domain as well as a nested domain with a high-resolution region at 0.25° nested two-way inside the coarse-resolution (1°) tropical channel. The variable-resolution or nested simulations are compared against the high-resolution simulations. Both models respond to increased resolution with enhanced precipitation and significant reduction in the ratio of convective to nonconvective precipitation. The limited-area grid refinement induces zonal asymmetry in precipitation (heating), accompanied by zonal anomalous Walker-like circulations and standing Rossby wave signals. Within the high-resolution limited area, the zonal distribution of precipitation is affected by advection in MPAS-A and by the nesting strategy in WRF. In both models, the propagation characteristics of equatorial waves are not significantly affected by the variations in resolution.
Abstract
This study uses semi-idealized simulations to investigate multiscale processes induced by the heterogeneity of soil moisture observed during the 2016 Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. The semi-idealized simulations have realistic land heterogeneity, but large-scale winds are removed. Analysis on isentropic coordinates enables the tracking of circulation that transports energy vertically and facilitates the identification of the primary convective processes induced by realistic land heterogeneity. The isentropes associated with upward motion are found to connect the ground characterized by high latent heat flux to cloud bases directly over the ground with high sensible heat flux, while isentropes associated with downward motion connect precipitation to the ground characterized by high sensible heat fluxes. The mixing of dry, warm parcels ascending from the ground with high sensible heat fluxes and moist parcels from high latent heat regions leads to cloud formation. This new mechanism explains how soil moisture heterogeneity provides the key ingredients such as buoyancy and moisture for shallow cloud formation. We also found that the submesoscale dominates upward energy transport in the boundary layer, while mesoscale circulations contribute to vertical energy transport above the boundary layer. Our novel method better illustrates and elucidates the nature of land atmospheric interactions under irregular and realistic soil moisture patterns.
Significance Statement
Models that resolve boundary layer turbulence and clouds have been used extensively to understand processes controlling land–atmosphere interactions, but many of their configurations and computational expense limit the use of variable land properties. This study aims to understand how heterogeneous land properties over multiple spatial scales affect energy redistribution by moist convection. Using a more realistic land representation and isentropic analyses, we found that high sensible heat flux regions are associated with relatively higher vertical velocity near the surface, and the high latent heat flux regions are associated with relatively higher moist energy. The mixing of parcels rising from these two regions results in the formation of shallow clouds.
Abstract
This study uses semi-idealized simulations to investigate multiscale processes induced by the heterogeneity of soil moisture observed during the 2016 Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) field campaign. The semi-idealized simulations have realistic land heterogeneity, but large-scale winds are removed. Analysis on isentropic coordinates enables the tracking of circulation that transports energy vertically and facilitates the identification of the primary convective processes induced by realistic land heterogeneity. The isentropes associated with upward motion are found to connect the ground characterized by high latent heat flux to cloud bases directly over the ground with high sensible heat flux, while isentropes associated with downward motion connect precipitation to the ground characterized by high sensible heat fluxes. The mixing of dry, warm parcels ascending from the ground with high sensible heat fluxes and moist parcels from high latent heat regions leads to cloud formation. This new mechanism explains how soil moisture heterogeneity provides the key ingredients such as buoyancy and moisture for shallow cloud formation. We also found that the submesoscale dominates upward energy transport in the boundary layer, while mesoscale circulations contribute to vertical energy transport above the boundary layer. Our novel method better illustrates and elucidates the nature of land atmospheric interactions under irregular and realistic soil moisture patterns.
Significance Statement
Models that resolve boundary layer turbulence and clouds have been used extensively to understand processes controlling land–atmosphere interactions, but many of their configurations and computational expense limit the use of variable land properties. This study aims to understand how heterogeneous land properties over multiple spatial scales affect energy redistribution by moist convection. Using a more realistic land representation and isentropic analyses, we found that high sensible heat flux regions are associated with relatively higher vertical velocity near the surface, and the high latent heat flux regions are associated with relatively higher moist energy. The mixing of parcels rising from these two regions results in the formation of shallow clouds.
Abstract
Accuracy of turbulence parameterization in representing planetary boundary layer (PBL) processes and surface–atmosphere interactions in climate models is critical for predicting the initiation and development of clouds. This study 1) evaluates WRF Model–simulated spatial patterns and vertical profiles of atmospheric variables at various spatial resolutions and with different PBL, surface layer, and shallow convection schemes against measurements; 2) identifies model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments; and 3) investigates the main causes of these biases by analyzing the dependence of modeled surface fluxes on PBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in the PBL and free atmosphere and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and latent heat (LH) flux biases, which suggests the positive feedback between precipitation and surface fluxes is responsible, at least in part, for the model drifts. The updated Kain–Fritsch cumulus potential (KF-CuP) shallow convection scheme tends to suppress the deep convection, consequently decreasing precipitation. The Eta Model surface layer scheme predicts more reasonable LH fluxes and LH–wind speed relationship than those for the MM5 scheme. The results help us identify sources of biases of current parameterization schemes in reproducing PBL processes, the initiation of convection, and intraseasonal variability of precipitation.
Abstract
Accuracy of turbulence parameterization in representing planetary boundary layer (PBL) processes and surface–atmosphere interactions in climate models is critical for predicting the initiation and development of clouds. This study 1) evaluates WRF Model–simulated spatial patterns and vertical profiles of atmospheric variables at various spatial resolutions and with different PBL, surface layer, and shallow convection schemes against measurements; 2) identifies model biases by examining the moisture tendency terms contributed by PBL and convection processes through nudging experiments; and 3) investigates the main causes of these biases by analyzing the dependence of modeled surface fluxes on PBL and surface layer schemes over the tropical ocean. The results show that PBL and surface parameterizations have surprisingly large impacts on precipitation and surface moisture fluxes over tropical oceans. All of the parameterizations tested tend to overpredict moisture in the PBL and free atmosphere and consequently result in larger moist static energy and precipitation. Moisture nudging tends to suppress the initiation of convection and reduces the excess precipitation. The reduction in precipitation bias in turn reduces the surface wind and latent heat (LH) flux biases, which suggests the positive feedback between precipitation and surface fluxes is responsible, at least in part, for the model drifts. The updated Kain–Fritsch cumulus potential (KF-CuP) shallow convection scheme tends to suppress the deep convection, consequently decreasing precipitation. The Eta Model surface layer scheme predicts more reasonable LH fluxes and LH–wind speed relationship than those for the MM5 scheme. The results help us identify sources of biases of current parameterization schemes in reproducing PBL processes, the initiation of convection, and intraseasonal variability of precipitation.
Abstract
This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of the Community Atmosphere Model (CAM4) at 240-, 120-, 60-, and 30-km model resolutions, each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of subtropical westerlies, atmospheric precipitable water content and profile, and to a lesser extent extratropical Rossby wave activity to model resolution and dynamical core. Real-world simulations using MPAS at 120- and 30-km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over the southern east Pacific, but the difference is smaller over the northern east Pacific. This interhemispheric difference is related to the enhancement of convection in the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over the southern east Pacific but has relatively little effect on those over the northern east Pacific. In comparison to the NCEP-2 reanalysis, MPAS real-world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier subtropics and poleward-shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.
Abstract
This study examines the sensitivity of atmospheric river (AR) frequency simulated by a global model with different grid resolutions and dynamical cores. Analysis is performed on aquaplanet simulations using version 4 of the Community Atmosphere Model (CAM4) at 240-, 120-, 60-, and 30-km model resolutions, each with the Model for Prediction Across Scales (MPAS) and High-Order Methods Modeling Environment (HOMME) dynamical cores. The frequency of AR events decreases with model resolution and the HOMME dynamical core produces more AR events than MPAS. Comparing the frequencies determined using absolute and percentile thresholds of large-scale conditions used to define an AR, model sensitivity is found to be related to the overall sensitivity of subtropical westerlies, atmospheric precipitable water content and profile, and to a lesser extent extratropical Rossby wave activity to model resolution and dynamical core. Real-world simulations using MPAS at 120- and 30-km grid resolutions also exhibit a decrease of AR frequency with increasing resolution over the southern east Pacific, but the difference is smaller over the northern east Pacific. This interhemispheric difference is related to the enhancement of convection in the tropics with increased resolution. This anomalous convection sets off Rossby wave patterns that weaken the subtropical westerlies over the southern east Pacific but has relatively little effect on those over the northern east Pacific. In comparison to the NCEP-2 reanalysis, MPAS real-world simulations are found to underestimate AR frequencies at both resolutions likely because of their climatologically drier subtropics and poleward-shifted jets. This study highlights the important links between model climatology of large-scale conditions and extremes.
Abstract
Two Madden–Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection–surface wind interactions.
Abstract
Two Madden–Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection–surface wind interactions.
Abstract
Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.
Abstract
Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.
Abstract
Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales–Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2°–3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.
Abstract
Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales–Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2°–3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.