Search Results
Abstract
This study investigates the combined impacts of the Madden–Julian oscillation (MJO) and extratropical anticyclonic Rossby wave breaking (AWB) on subseasonal Atlantic tropical cyclone (TC) activity and their physical connections. Our results show that during MJO phases 2–3 (enhanced Indian Ocean convection) and 6–7 (enhanced tropical Pacific convection), there are significant changes in basinwide TC activity. The MJO and AWB collaborate to suppress basinwide TC activity during phases 6–7 but not during phases 2–3. During phases 6–7, when AWB occurs, various TC metrics including hurricanes, accumulated cyclone energy, and rapid intensification probability decrease by ∼50%–80%. Simultaneously, large-scale environmental variables, like vertical wind shear, precipitable water, and sea surface temperatures become extremely unfavorable for TC formation and intensification, compared to periods characterized by suppressed AWB activity during the same MJO phases. Further investigation reveals that AWB events during phases 6–7 occur in concert with the development of a stronger anticyclone in the lower troposphere, which transports more dry, stable extratropical air equatorward, and drives enhanced tropical SST cooling. As a result, individual AWB events in phases 6–7 can disturb the development of surrounding TCs to a greater extent than their phases 2–3 counterparts. The influence of the MJO on AWB over the western subtropical Atlantic can be attributed to the modulation of the convectively forced Rossby wave source over the tropical eastern Pacific. A significant number of Rossby waves initiating from this region during phases 5–6 propagate into the subtropical North Atlantic, preceding the occurrence of AWB events in phases 6–7.
Abstract
This study investigates the combined impacts of the Madden–Julian oscillation (MJO) and extratropical anticyclonic Rossby wave breaking (AWB) on subseasonal Atlantic tropical cyclone (TC) activity and their physical connections. Our results show that during MJO phases 2–3 (enhanced Indian Ocean convection) and 6–7 (enhanced tropical Pacific convection), there are significant changes in basinwide TC activity. The MJO and AWB collaborate to suppress basinwide TC activity during phases 6–7 but not during phases 2–3. During phases 6–7, when AWB occurs, various TC metrics including hurricanes, accumulated cyclone energy, and rapid intensification probability decrease by ∼50%–80%. Simultaneously, large-scale environmental variables, like vertical wind shear, precipitable water, and sea surface temperatures become extremely unfavorable for TC formation and intensification, compared to periods characterized by suppressed AWB activity during the same MJO phases. Further investigation reveals that AWB events during phases 6–7 occur in concert with the development of a stronger anticyclone in the lower troposphere, which transports more dry, stable extratropical air equatorward, and drives enhanced tropical SST cooling. As a result, individual AWB events in phases 6–7 can disturb the development of surrounding TCs to a greater extent than their phases 2–3 counterparts. The influence of the MJO on AWB over the western subtropical Atlantic can be attributed to the modulation of the convectively forced Rossby wave source over the tropical eastern Pacific. A significant number of Rossby waves initiating from this region during phases 5–6 propagate into the subtropical North Atlantic, preceding the occurrence of AWB events in phases 6–7.
Abstract
Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales–Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2°–3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.
Abstract
Aquaplanet simulations using the Community Atmosphere Model, version 4 (CAM4), with the Model for Prediction Across Scales–Atmosphere (MPAS-A) and High-Order Method Modeling Environment (HOMME) dynamical cores and using zonally symmetric sea surface temperature (SST) structure are studied to understand the dependence of the intertropical convergence zone (ITCZ) structure on resolution and dynamical core. While all resolutions in HOMME and the low-resolution MPAS-A simulations give a single equatorial peak in zonal mean precipitation, the high-resolution MPAS-A simulations give a double ITCZ with precipitation peaking around 2°–3° on either side of the equator. This study reveals that the structure of ITCZ is dependent on the feedbacks between convection and large-scale circulation. It is shown that the difference in specific humidity between HOMME and MPAS-A can lead to different latitudinal distributions of the convective available potential energy (CAPE) by influencing latent heat release by clouds and the upper-tropospheric temperature. With lower specific humidity, the high-resolution MPAS-A simulation has CAPE increasing away from the equator that enhances convection away from the equator and, through a positive feedback on the circulation, results in a double ITCZ structure. In addition, it is shown that the dominance of antisymmetric waves in the model is not enough to cause double ITCZ, and the lateral extent of equatorial waves does not play an important role in determining the width of the ITCZ but rather the latter may influence the former.
Abstract
Observations of robust scaling behavior in clouds and precipitation are used to derive constraints on how partitioning of precipitation should change with model resolution. Analysis indicates that 90%–99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200-km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. It is shown that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting model (WRF) also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this “scale-incognizant” behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution dependence of resolved cloud fraction and resolved stratiform precipitation fraction.
Abstract
Observations of robust scaling behavior in clouds and precipitation are used to derive constraints on how partitioning of precipitation should change with model resolution. Analysis indicates that 90%–99% of stratiform precipitation should occur in clouds that are resolvable by contemporary climate models (e.g., with 200-km or finer grid spacing). Furthermore, this resolved fraction of stratiform precipitation should increase sharply with resolution, such that effectively all stratiform precipitation should be resolvable above scales of ~50 km. It is shown that the Community Atmosphere Model (CAM) and the Weather Research and Forecasting model (WRF) also exhibit the robust cloud and precipitation scaling behavior that is present in observations, yet the resolved fraction of stratiform precipitation actually decreases with increasing model resolution. A suite of experiments with multiple dynamical cores provides strong evidence that this “scale-incognizant” behavior originates in one of the CAM4 parameterizations. An additional set of sensitivity experiments rules out both convection parameterizations, and by a process of elimination these results implicate the stratiform cloud and precipitation parameterization. Tests with the CAM5 physics package show improvements in the resolution dependence of resolved cloud fraction and resolved stratiform precipitation fraction.
Abstract
Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.
Abstract
Systematic sensitivity of the jet position and intensity to horizontal model resolution is identified in several aquaplanet AGCMs, with the coarser resolution producing a more equatorward eddy-driven jet and a stronger upper-tropospheric jet intensity. As the resolution of the models increases to 50 km or finer, the jet position and intensity show signs of convergence within each model group. The mechanism for this convergence behavior is investigated using a hybrid Eulerian–Lagrangian finite-amplitude wave activity budget developed for the upper-tropospheric absolute vorticity. The results suggest that the poleward shift of the eddy-driven jet with higher resolution can be attributed to the smaller effective diffusivity of the model in the midlatitudes that allows more wave activity to survive the dissipation and to reach the subtropical critical latitude for wave breaking. The enhanced subtropical wave breaking and associated irreversible vorticity mixing act to maintain a more poleward peak of the vorticity gradient, and thus a more poleward jet. Being overdissipative, the coarse-resolution AGCMs misrepresent the nuanced nonlinear aspect of the midlatitude eddy–mean flow interaction, giving rise to the equatorward bias of the eddy-driven jet. In accordance with the asymptotic behavior of effective diffusivity of Batchelor turbulence in the large Peclet number limit, the upper-tropospheric effective diffusivity of the aquaplanet AGCMs displays signs of convergence in the midlatitude toward a value of approximately 107 m2 s−1 for the ∇2 diffusion. This provides a dynamical underpinning for the convergence of the jet stream observed in these AGCMs at high resolution.
Abstract
This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.
Abstract
This study presents a diagnosis of a multiresolution approach using the Model for Prediction Across Scales–Atmosphere (MPAS-A) for simulating regional climate. Four Atmospheric Model Intercomparison Project (AMIP) experiments were conducted for 1999–2009. In the first two experiments, MPAS-A was configured using global quasi-uniform grids at 120- and 30-km grid spacing. In the other two experiments, MPAS-A was configured using variable-resolution (VR) mesh with local refinement at 30 km over North America and South America and embedded in a quasi-uniform domain at 120 km elsewhere. Precipitation and related fields in the four simulations are examined to determine how well the VRs reproduce the features simulated by the globally high-resolution model in the refined domain. In previous analyses of idealized aquaplanet simulations, characteristics of the global high-resolution simulation in moist processes developed only near the boundary of the refined region. In contrast, AMIP simulations with VR grids can reproduce high-resolution characteristics across the refined domain, particularly in South America. This finding indicates the importance of finely resolved lower boundary forcings such as topography and surface heterogeneity for regional climate and demonstrates the ability of the MPAS-A VR to replicate the large-scale moisture transport as simulated in the quasi-uniform high-resolution model. Upscale effects from the high-resolution regions on a large-scale circulation outside the refined domain are observed, but the effects are mainly limited to northeastern Asia during the warm season. Together, the results support the multiresolution approach as a computationally efficient and physically consistent method for modeling regional climate.
Abstract
It is well documented that over the tropical oceans, column-integrated precipitable water (pw) and precipitation (P) have a nonlinear relationship. In this study moisture budget analysis is used to examine this P–pw relationship in a normalized precipitable water framework. It is shown that the parameters of the nonlinear relationship depend on the vertical structure of moisture convergence. Specifically, the precipitable water values at which precipitation is balanced independently by evaporation versus by moisture convergence define a critical normalized precipitable water, pwnc. This is a measure of convective inhibition that separates tropical precipitation into two regimes: a local evaporation-controlled regime with widespread drizzle and a precipitable water–controlled regime. Most of the 17 CMIP6 historical simulations examined here have higher pwnc compared to ERA5, and more frequently they operate in the drizzle regime. When compared to observations, they overestimate precipitation over the high-evaporation oceanic regions off the equator, thereby producing a “double ITCZ” feature, while underestimating precipitation over the large tropical landmasses and over the climatologically moist oceanic regions near the equator. The responses to warming under the SSP585 scenario are also examined using the normalized precipitable water framework. It is shown that the critical normalized precipitable water value at which evaporation versus moisture convergence balance precipitation decreases as a result of the competing dynamic and thermodynamic responses to warming, resulting in an increase in drizzle and total precipitation. Statistically significant historical trends corresponding to the thermodynamic and dynamic changes are detected in ERA5 and in low-intensity drizzle precipitation in the PERSIANN precipitation dataset.
Abstract
It is well documented that over the tropical oceans, column-integrated precipitable water (pw) and precipitation (P) have a nonlinear relationship. In this study moisture budget analysis is used to examine this P–pw relationship in a normalized precipitable water framework. It is shown that the parameters of the nonlinear relationship depend on the vertical structure of moisture convergence. Specifically, the precipitable water values at which precipitation is balanced independently by evaporation versus by moisture convergence define a critical normalized precipitable water, pwnc. This is a measure of convective inhibition that separates tropical precipitation into two regimes: a local evaporation-controlled regime with widespread drizzle and a precipitable water–controlled regime. Most of the 17 CMIP6 historical simulations examined here have higher pwnc compared to ERA5, and more frequently they operate in the drizzle regime. When compared to observations, they overestimate precipitation over the high-evaporation oceanic regions off the equator, thereby producing a “double ITCZ” feature, while underestimating precipitation over the large tropical landmasses and over the climatologically moist oceanic regions near the equator. The responses to warming under the SSP585 scenario are also examined using the normalized precipitable water framework. It is shown that the critical normalized precipitable water value at which evaporation versus moisture convergence balance precipitation decreases as a result of the competing dynamic and thermodynamic responses to warming, resulting in an increase in drizzle and total precipitation. Statistically significant historical trends corresponding to the thermodynamic and dynamic changes are detected in ERA5 and in low-intensity drizzle precipitation in the PERSIANN precipitation dataset.
Abstract
Two Madden–Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection–surface wind interactions.
Abstract
Two Madden–Julian oscillation (MJO) episodes observed during the 2011 Atmospheric Radiation Measurement Program MJO Investigation Experiment (AMIE)/DYNAMO field campaign are simulated using a regional model with various cumulus parameterizations, a regional cloud-permitting model, and a global variable-resolution model with a high-resolution region centered over the tropical Indian Ocean. Model biases in relationships relevant to existing instability theories of MJO are examined and their relative contributions to the overall model errors are quantified using a linear statistical model. The model simulations capture the observed approximately log-linear relationship between moisture saturation fraction and precipitation, but precipitation associated with the given saturation fraction is overestimated especially at low saturation fraction values. This bias is a major contributor to the excessive precipitation during the suppressed phase of MJO. After accounting for this bias using a linear statistical model, the spatial and temporal structures of the model-simulated MJO episodes are much improved, and what remains of the biases is strongly correlated with biases in saturation fraction. The excess precipitation bias during the suppressed phase of the MJO episodes is accompanied by excessive column-integrated radiative forcing and surface evaporation. A large portion of the bias in evaporation is related to biases in wind speed, which are correlated with those of precipitation. These findings suggest that the precipitation bias sustains itself at least partly by cloud radiative feedbacks and convection–surface wind interactions.
Abstract
This study aims to evaluate the consistency and discrepancies in estimates of diabatic heating profiles associated with precipitation based on satellite observations and microphysics and those derived from the thermodynamics of the large-scale environment. It presents a survey of diabatic heating profile estimates from four Tropical Rainfall Measuring Mission (TRMM) products, four global reanalyses, and in situ sounding measurements from eight field campaigns at various tropical locations. Common in most of the estimates are the following: (i) bottom-heavy profiles, ubiquitous over the oceans, are associated with relatively low rain rates, while top-heavy profiles are generally associated with high rain rates; (ii) temporal variability of latent heating profiles is dominated by two modes, a deep mode with a peak in the upper troposphere and a shallow mode with a low-level peak; and (iii) the structure of the deep modes is almost the same in different estimates and different regions in the tropics. The primary uncertainty is in the amount of shallow heating over the tropical oceans, which differs substantially among the estimates.
Abstract
This study aims to evaluate the consistency and discrepancies in estimates of diabatic heating profiles associated with precipitation based on satellite observations and microphysics and those derived from the thermodynamics of the large-scale environment. It presents a survey of diabatic heating profile estimates from four Tropical Rainfall Measuring Mission (TRMM) products, four global reanalyses, and in situ sounding measurements from eight field campaigns at various tropical locations. Common in most of the estimates are the following: (i) bottom-heavy profiles, ubiquitous over the oceans, are associated with relatively low rain rates, while top-heavy profiles are generally associated with high rain rates; (ii) temporal variability of latent heating profiles is dominated by two modes, a deep mode with a peak in the upper troposphere and a shallow mode with a low-level peak; and (iii) the structure of the deep modes is almost the same in different estimates and different regions in the tropics. The primary uncertainty is in the amount of shallow heating over the tropical oceans, which differs substantially among the estimates.
Abstract
For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m−2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation.
Significance Statement
This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.
Abstract
For the Community Atmosphere Model version 6 (CAM6), an adjustment is needed to conserve dry air mass. This adjustment exposes an inconsistency in how CAM6’s energy budget incorporates water—in CAM6 water in the vapor phase has energy, but condensed phases of water do not. When water vapor condenses, only its latent energy is retained in the model, while its remaining internal, potential, and kinetic energy are lost. A global fixer is used in the default CAM6 model to maintain global energy conservation, but locally the energy tendency associated with water changing phase violates the divergence theorem. This error in energy tendency is intrinsically tied to the water vapor tendency, and reaches its highest values in regions of heavy rainfall, where the error can be as high as 40 W m−2 annually averaged. Several possible changes are outlined within this manuscript that would allow CAM6 to satisfy the divergence theorem locally. These fall into one of two categories: 1) modifying the surface flux to balance the local atmospheric energy tendency and 2) modifying the local atmospheric tendency to balance the surface plus top-of-atmosphere energy fluxes. To gauge which aspects of the simulated climate are most sensitive to this error, the simplest possible change—where condensed water still does not carry energy and a local energy fixer is used in place of the global one—is implemented within CAM6. Comparing this experiment with the default configuration of CAM6 reveals precipitation, particularly its variability, to be highly sensitive to the energy budget formulation.
Significance Statement
This study examines and explains spurious regional sources and sinks of energy in a widely used climate model. These energy errors result from not tracking energy associated with water after it transitions from the vapor phase to either liquid or ice. Instead, the model used a global fixer to offset the energy tendency related to the energy sources and sinks associated with condensed water species. We replace this global fixer with a local one to examine the model sensitivity to the regional energy error and find a large sensitivity in the simulated hydrologic cycle. This work suggests that the underlying thermodynamic assumptions in the model should be revisited to build confidence in the model-simulated regional-scale water and energy cycles.