Search Results

You are looking at 11 - 20 of 32 items for

  • Author or Editor: Sarah Tessendorf x
  • Refine by Access: All Content x
Clear All Modify Search
Sarah A. Tessendorf
,
Kyoko Ikeda
,
Courtney Weeks
,
Roy Rasmussen
,
Jamie Wolff
, and
Lulin Xue

Abstract

This paper presents an evaluation of the precipitation patterns and seedability of orographic clouds in Wyoming using SNOTEL precipitation data and a high-resolution multiyear model simulation over an 8-yr period. A key part of assessing the potential for cloud seeding is to understand the natural precipitation patterns and how often atmospheric conditions and clouds meet cloud-seeding criteria. The analysis shows that high-resolution model simulations are useful tools for studying patterns of orographic precipitation and establishing the seedability of clouds by providing information that is either missed by or not available from current observational networks. This study indicates that the ground-based seeding potential in some mountain ranges in Wyoming is limited by flow blocking and/or prevailing winds that were not normal to the barrier to produce upslope flow. Airborne seeding generally had the most potential for all of the mountain ranges that were studied.

Free access
Robert J. Trapp
,
Sarah A. Tessendorf
,
Elaine Savageau Godfrey
, and
Harold E. Brooks

Abstract

The primary objective of this study was to estimate the percentage of U.S. tornadoes that are spawned annually by squall lines and bow echoes, or quasi-linear convective systems (QLCSs). This was achieved by examining radar reflectivity images for every tornado event recorded during 1998–2000 in the contiguous United States. Based on these images, the type of storm associated with each tornado was classified as cell, QLCS, or other.

Of the 3828 tornadoes in the database, 79% were produced by cells, 18% were produced by QLCSs, and the remaining 3% were produced by other storm types, primarily rainbands of landfallen tropical cyclones. Geographically, these percentages as well as those based on tornado days exhibited wide variations. For example, 50% of the tornado days in Indiana were associated with QLCSs.

In an examination of other tornado attributes, statistically more weak (F1) and fewer strong (F2–F3) tornadoes were associated with QLCSs than with cells. QLCS tornadoes were more probable during the winter months than were cells. And finally, QLCS tornadoes displayed a comparatively higher and statistically significant tendency to occur during the late night/early morning hours. Further analysis revealed a disproportional decrease in F0–F1 events during this time of day, which led the authors to propose that many (perhaps as many as 12% of the total) weak QLCSs tornadoes were not reported.

Full access
Lulin Xue
,
Akihiro Hashimoto
,
Masataka Murakami
,
Roy Rasmussen
,
Sarah A. Tessendorf
,
Daniel Breed
,
Shaun Parkinson
,
Pat Holbrook
, and
Derek Blestrud

Abstract

A silver iodide (AgI) cloud-seeding parameterization has been implemented into the Thompson microphysics scheme of the Weather Research and Forecasting model to investigate glaciogenic cloud-seeding effects. The sensitivity of the parameterization to meteorological conditions, cloud properties, and seeding rates was examined by simulating two-dimensional idealized moist flow over a bell-shaped mountain. The results verified that this parameterization can reasonably simulate the physical processes of cloud seeding with the limitations of the constant cloud droplet concentration assumed in the scheme and the two-dimensional model setup. The results showed the following: 1) Deposition was the dominant nucleation mode of AgI from simulated aircraft seeding, whereas immersion freezing was the most active mode for ground-based seeding. Deposition and condensation freezing were also important for ground-based seeding. Contact freezing was the weakest nucleation mode for both ground-based and airborne seeding. 2) Diffusion and riming on AgI-nucleated ice crystals depleted vapor and liquid water, resulting in more ice-phase precipitation on the ground for all of the seeding cases relative to the control cases. Most of the enhancement came from vapor depletion. The relative enhancement by seeding ranged from 0.3% to 429% under various conditions. 3) The maximum local AgI activation ratio was 60% under optimum conditions. Under most seeding conditions, however, this ratio was between 0.02% and 2% in orographic clouds. 4) The seeding effect was inversely related to the natural precipitation efficiency but was positively related to seeding rates. 5) Ground-based seeding enhanced precipitation on the lee side of the mountain, whereas airborne seeding from lower flight tracks enhanced precipitation on the windward side of the mountain.

Full access
Lulin Xue
,
Sarah A. Tessendorf
,
Eric Nelson
,
Roy Rasmussen
,
Daniel Breed
,
Shaun Parkinson
,
Pat Holbrook
, and
Derek Blestrud

Abstract

Four cloud-seeding cases over southern Idaho during the 2010/11 winter season have been simulated by the Weather Research and Forecasting (WRF) model using the coupled silver iodide (AgI) cloud-seeding scheme that was described in Part I. The seeding effects of both ground-based and airborne seeding as well as the impacts of model physics, seeding rates, location, timing, and cloud properties on seeding effects have been investigated. The results were compared with those from Part I and showed the following: 1) For the four cases tested in this study, control simulations driven by the Real-Time Four Dimensional Data Assimilation (RTFDDA) WRF forecast data generated more realistic atmospheric conditions and precipitation patterns than those driven by the North America Regional Reanalysis data. Sensitivity experiments therefore used the RTFDDA data. 2) Glaciogenic cloud seeding increased orographic precipitation by less than 1% over the simulation domain, including the Snake River basin, and by up to 5% over the target areas. The local values of the relative precipitation enhancement by seeding were ~20%. Most of the enhancement came from vapor depletion. 3) The seeding effect was inversely related to the natural precipitation efficiency but was positively related to seeding rates. 4) Airborne seeding is generally more efficient than ground-based seeding in terms of targeting, but its efficiency depends on local meteorological conditions. 5) The normalized seeding effects ranged from 0.4 to 1.6 under various conditions for a certain seeding event.

Full access
Roy M. Rasmussen
,
Sarah A. Tessendorf
,
Lulin Xue
,
Courtney Weeks
,
Kyoko Ikeda
,
Scott Landolt
,
Dan Breed
,
Terry Deshler
, and
Barry Lawrence

Abstract

The Wyoming Weather Modification Pilot Project randomized cloud seeding experiment was a crossover statistical experiment conducted over two mountain ranges in eastern Wyoming and lasted for 6 years (2008–13). The goal of the experiment was to determine if cloud seeding of orographic barriers could increase snowfall and snowpack. The experimental design included triply redundant snow gauges deployed in a target–control configuration, covariate snow gauges to account for precipitation variability, and ground-based seeding with silver iodide (AgI). The outcomes of this experiment are evaluated with the statistical–physical experiment design and with ensemble modeling. The root regression ratio (RRR) applied to 118 experimental units provided insufficient statistical evidence (p value of 0.28) to reject the null hypothesis that there was no effect from ground-based cloud seeding. Ensemble modeling estimates of the impact of ground-based seeding provide an alternate evaluation of the 6-yr experiment. The results of the model ensemble approach with and without seeding estimated a mean enhancement of precipitation of 5%, with an inner-quartile range of 3%–7%. Estimating the impact on annual precipitation over these mountain ranges requires results from another study that indicated that approximately 30% of the annual precipitation results from clouds identified as seedable within the seeding experiment. Thus the seeding impact is on the order of 1.5% of the annual precipitation, compared to 1% for the statistical–physical experiment, which was not sufficient to reject the null hypothesis. These results provide an estimate of the impact of ground-based cloud seeding in the Sierra Madre and Medicine Bow Mountains in Wyoming that accounts for uncertainties in both initial conditions and model physics.

Open access
Sarah A. Tessendorf
,
Allyson Rugg
,
Alexei Korolev
,
Ivan Heckman
,
Courtney Weeks
,
Gregory Thompson
,
Darcy Jacobson
,
Dan Adriaansen
, and
Julie Haggerty

Abstract

Supercooled large drop (SLD) icing poses a unique hazard for aircraft and has resulted in new regulations regarding aircraft certification to fly in regions of known or forecast SLD icing conditions. The new regulations define two SLD icing categories based upon the maximum supercooled liquid water drop diameter (Dmax): freezing drizzle (100–500 μm) and freezing rain (>500 μm). Recent upgrades to U.S. operational numerical weather prediction models lay a foundation to provide more relevant aircraft icing guidance including the potential to predict explicit drop size. The primary focus of this paper is to evaluate a proposed method for estimating the maximum drop size from model forecast data to differentiate freezing drizzle from freezing rain conditions. Using in situ cloud microphysical measurements collected in icing conditions during two field campaigns between January and March 2017, this study shows that the High-Resolution Rapid Refresh model is capable of distinguishing SLD icing categories of freezing drizzle and freezing rain using a Dmax extracted from the rain category of the microphysics output. It is shown that the extracted Dmax from the model correctly predicted the observed SLD icing category as much as 99% of the time when the HRRR accurately forecast SLD conditions; however, performance varied by the method to define Dmax and by the field campaign dataset used for verification.

Full access
David J. Serke
,
Scott M. Ellis
,
Sarah A. Tessendorf
,
David E. Albo
,
John C. Hubbert
, and
Julie A. Haggerty

Abstract

Detection of in-flight icing hazard is a priority of the aviation safety community. The “Radar Icing Algorithm” (RadIA) has been developed to indicate the presence, phase, and relative size of supercooled drops. This paper provides an evaluation of RadIA via comparison to in situ microphysical measurements collected with a research aircraft during the 2017 “Seeded and Natural Orographic Wintertime clouds: the Idaho Experiment” (SNOWIE) field campaign. RadIA uses level-2 dual-polarization radar moments from operational National Weather Service WSR-88D and a numerical weather prediction model temperature profile as inputs. Moment membership functions are defined based on the results of previous studies, and fuzzy logic is used to combine the output of these functions to create a 0 to 1 interest for detecting small-drop, large-drop, and mixed-phase icing. Data from the two-dimensional stereo (2D-S) particle probe on board the University of Wyoming King Air aircraft were categorized as either liquid or solid phase water with a shape classification algorithm and binned by size. RadIA interest values from 17 cases were matched to statistical measures of the solid/liquid particle size distributions (such as maximum particle diameter) and values of LWC from research aircraft flights. Receiver operating characteristic area under the curve (AUC) values for RadIA algorithms were 0.75 for large-drop, 0.73 for small-drop, and 0.83 for mixed-phase cases. RadIA is proven to be a valuable new capability for detecting the presence of in-flight icing hazards from ground-based precipitation radar.

Full access
Sisi Chen
,
Lulin Xue
,
Sarah Tessendorf
,
Thomas Chubb
,
Andrew Peace
,
Luis Ackermann
,
Artur Gevorgyan
,
Yi Huang
,
Steven Siems
,
Roy Rasmussen
,
Suzanne Kenyon
, and
Johanna Speirs

Abstract

This study presents the first numerical simulations of seeded clouds over the Snowy Mountains of Australia. WRF-WxMod, a novel glaciogenic cloud-seeding model, was utilized to simulate the cloud response to winter orographic seeding under various meteorological conditions. Three cases during the 2018 seeding periods were selected for model evaluation, coinciding with an intensive ground-based measurement campaign. The campaign data were used for model validation and evaluation. Comparisons between simulations and observations demonstrate that the model realistically represents cloud structures, liquid water path, and precipitation. Sensitivity tests were performed to pinpoint key uncertainties in simulating natural and seeded clouds and precipitation processes. They also shed light on the complex interplay between various physical parameters/processes and their interaction with large-scale meteorology. Our study found that in unseeded scenarios, the warm and cold biases in different initialization datasets can heavily influence the intensity and phase of natural precipitation. Secondary ice production via Hallett–Mossop processes exerts a secondary influence. On the other hand, the seeding impacts are primarily sensitive to aerosol conditions and the natural ice nucleation process. Both factors alter the supercooled liquid water availability and the precipitation phase, consequently impacting the silver iodide (AgI) nucleation rate. Furthermore, model sensitivities were inconsistent across cases, indicating that no single model configuration optimally represents all three cases. This highlights the necessity of employing an ensemble approach for a more comprehensive and accurate assessment of the seeding impact.

Significance Statement

Winter orographic cloud seeding has been conducted for decades over the Snowy Mountains of Australia for securing water resources. However, this study is the first to perform cloud-seeding simulation for a robust, event-based seeding impact evaluation. A state-of-the-art cloud-seeding model (WRF-WxMod) was used to simulate the cloud seeding and quantified its impact on the region. The Southern Hemisphere, due to low aerosol emissions and highly pristine cloud conditions, has distinctly different cloud microphysical characteristics than the Northern Hemisphere, where WRF-WxMod has been successfully applied in a few regions over the United States. The results showed that WRF-WxMod could accurately capture the clouds and precipitation in both the natural and seeded conditions.

Restricted access
Vaughan T. J. Phillips
,
Marco Formenton
,
Vijay P. Kanawade
,
Linus R. Karlsson
,
Sachin Patade
,
Jiming Sun
,
Christelle Barthe
,
Jean-Pierre Pinty
,
Andrew G. Detwiler
,
Weitao Lyu
, and
Sarah A. Tessendorf

Abstract

In this two-part paper, influences from environmental factors on lightning in a convective storm are assessed with a model. In Part I, an electrical component is described and applied in the Aerosol–Cloud model (AC). AC treats many types of secondary (e.g., breakup in ice–ice collisions, raindrop-freezing fragmentation, rime splintering) and primary (heterogeneous, homogeneous freezing) ice initiation. AC represents lightning flashes with a statistical treatment of branching from a fractal law constrained by video imagery.

The storm simulated is from the Severe Thunderstorm Electrification and Precipitation Study (STEPS; 19/20 June 2000). The simulation was validated microphysically [e.g., ice/droplet concentrations and mean sizes, liquid water content (LWC), reflectivity, surface precipitation] and dynamically (e.g., ascent) in our 2017 paper. Predicted ice concentrations (~10 L−1) agreed—to within a factor of about 2—with aircraft data at flight levels (−10° to −15°C). Here, electrical statistics of the same simulation are compared with observations. Flash rates (to within a factor of 2), triggering altitudes and polarity of flashes, and electric fields, all agree with the coincident STEPS observations.

The “normal” tripole of charge structure observed during an electrical balloon sounding is reproduced by AC. It is related to reversal of polarity of noninductive charging in ice–ice collisions seen in laboratory experiments when temperature or LWC are varied. Positively charged graupel and negatively charged snow at most midlevels, charged away from the fastest updrafts, is predicted to cause the normal tripole. Total charge separated in the simulated storm is dominated by collisions involving secondary ice from fragmentation in graupel–snow collisions.

Free access
Katja Friedrich
,
Jeffrey R. French
,
Sarah A. Tessendorf
,
Melinda Hatt
,
Courtney Weeks
,
Robert M. Rauber
,
Bart Geerts
,
Lulin Xue
,
Roy M. Rasmussen
,
Derek R. Blestrud
,
Melvin L. Kunkel
,
Nicholas Dawson
, and
Shaun Parkinson

Abstract

The spatial distribution and magnitude of snowfall resulting from cloud seeding with silver iodide (AgI) is closely linked to atmospheric conditions, seeding operations, and dynamical, thermodynamical, and microphysical processes. Here, microphysical processes leading to ice and snow production are analyzed in orographic clouds for three cloud-seeding events, each with light or no natural precipitation and well-defined, traceable seeding lines. Airborne and ground-based radar observations are linked to in situ cloud and precipitation measurements to determine the spatiotemporal evolution of ice initiation, particle growth, and snow fallout in seeded clouds. These processes and surface snow amounts are explored as particle plumes evolve from varying amounts of AgI released, and within changing environmental conditions, including changes in liquid water content (LWC) along and downwind of the seeding track, wind speed, and shear. More AgI did not necessarily produce more liquid equivalent snowfall (LESnow). The greatest amount of LESnow, largest area covered by snowfall, and highest peak snowfall produced through seeding occurred on the day with the largest and most widespread occurrence of supercooled drizzle, highest wind shear, and greater LWC along and downwind of the seeding track. The day with the least supercooled drizzle and the lowest LWC downwind of the seeding track produced the smallest amount of LESnow through seeding. The stronger the wind was, the farther away the snowfall occurred from the seeding track.

Free access