Search Results

You are looking at 11 - 20 of 23 items for

  • Author or Editor: Shawn M. Milrad x
  • Refine by Access: All Content x
Clear All Modify Search
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The St. Lawrence River valley (SLRV) is an important orographic feature in eastern Canada that can affect surface wind patterns and contribute to locally higher amounts of precipitation. The impact of the SLRV on precipitation distributions associated with transitioning, or transitioned, tropical cyclones that approached the region is assessed. Such cases can result in heavy precipitation during the warm season, as during the transition of Hurricane Ike (2008). Thirty-eight tropical cyclones tracked within 500 km of the SLRV from 1979 to 2011. Utilizing the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), 19 of the 38 cases (group A) had large values of ageostrophic frontogenesis within and parallel to the SLRV, in a region of northeasterly surface winds associated with pressure-driven wind channeling. Using composite and case analyses, results show that the heaviest precipitation is often located within the SLRV, regardless of the location of large-scale forcing for ascent, and is concomitant with ageostrophic frontogenesis. The suggested physical pathway for precipitation modulation in the SLRV is as follows. Valley-induced near-surface ageostrophic frontogenesis is due to pressure-driven wind channeling as a result of the along-valley pressure gradient [typically exceeding 0.4 hPa (100 km)−1] established by the approaching cyclone. Near-surface cold-air advection as a result of the northeasterly pressure-driven channeling results in a temperature inversion, similar to what is observed in cool-season wind-channeling cases. The ageostrophic frontogenesis, acting as a mesoscale ascent-focusing mechanism, helps air parcels to rise above the temperature inversion into a conditionally unstable atmosphere, which results in enhanced precipitation focused along the SLRV.

Full access
Lisa M. Hryciw
,
Eyad H. Atallah
,
Shawn M. Milrad
, and
John R. Gyakum

Abstract

Drought is a complex natural hazard that is endemic to the Canadian prairies. The 1999–2005 Canadian prairie drought, which had great socioeconomic impacts, was meteorologically unique in that it did not conform to the traditional persistent positive Pacific–North American (PNA) pattern and west coast ridging paradigm normally associated with prairie drought. The purpose of this study is to diagnose the unique synoptic-scale mechanisms responsible for modulating subsidence during this drought. Using 30-day running means of the percent of normal precipitation from station data, key severe dry periods during 1999–2005 are identified. Analysis of the mean fields from reanalysis data shows that these dry events can be grouped into three upper-level flow categories: amplified warm, amplified cold, and zonal. Amplified warm cases match the traditional ridging paradigm, while amplified cold and zonal cases elucidate the fact that cold-air advection and downsloping flow, respectively, can also be important subsidence mechanisms during a Canadian prairie drought. In all, the 1999–2005 drought was more meteorologically complex on the synoptic scale than previous historic prairie droughts. Finally, a brief historical perspective shows that the drought was centered in 2001–02 and was not as severe as historical droughts, suggesting that societal vulnerability also played a substantial role in the impacts of the 1999–2005 drought.

Full access
Gina M. Ressler
,
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

Freezing rain is a major environmental hazard that is especially common along the St. Lawrence River valley (SLRV) in southern Quebec, Canada. For large cities such as Montreal, severe events can have a devastating effect on people, property, and commerce. In this study, a composite analysis of 46 long-duration events for the period 1979–2008 is presented to identify key synoptic-scale structures and precursors of Montreal freezing rain events. Based on the observed structures of the 500-hPa heights, these events are manually partitioned into three types—west, central, and east—depending on the location and tilt of the 500-hPa trough axis. West events are characterized by a strong surface anticyclone downstream of Montreal, an inverted trough extending northward to the Great Lakes, and a quasi-stationary area of geostrophic frontogenesis located over Quebec. Central events are characterized by a cyclone–anticyclone couplet pattern, with a deeper surface trough extending into southern Ontario, and a strong stationary anticyclone over Quebec. East events are characterized by the passage of a transient well-defined cyclone, and a weaker downstream anticyclone. In all cases, cold northeasterly winds are channeled down the SLRV primarily by pressure-driven channeling. Northeasterly surface winds are associated with strong low-level temperature inversions within the SLRV. Additionally, west events tend to have a longer duration of weaker precipitation, while east events tend to have a shorter duration of more intense precipitation. The results of this study may aid forecasters in identifying and understanding the synoptic-scale structures and precursors to Montreal freezing rain events.

Full access
Alissa Razy
,
Shawn M. Milrad
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

Orographic wind channeling, defined as dynamically and thermally induced processes that force wind to blow along the axis of a valley, is a common occurrence along the St. Lawrence River Valley (SLRV) in Quebec, Canada, and produces substantial observed weather impacts at stations along the valley, including Montreal (CYUL). Cold-season observed north-northeast (n = 55) and south-southeast (n = 16) surface wind events at CYUL are identified from 1979 to 2002. The authors partition the north-northeast wind events into four groups using manual synoptic typing. Types A and D (“inland cyclone” and “northwestern cyclone”) are associated with strong lower-tropospheric geostrophic warm-air advection and near-surface pressure-driven channeling of cold air from the north-northeast, along the axis of the SLRV. Type C (“anticyclone”) shows no evidence of a surface cyclone and thus is the least associated with inclement weather at CYUL, whereas type B (“coastal cyclone”) is associated with predominantly forced wind channeling along the SLRV. Type D of the north-northeast wind events and all south-southeast wind events exhibit similar sea level pressure patterns. The respective magnitudes of the pressure gradients in the Lake Champlain Valley south of CYUL and the SLRV play a large role in determining the favored wind direction. Soundings of the various event types illustrate substantial differences in temperature structure, with a large near-surface temperature inversion particularly prevalent in north-northeast events. The results of this study may provide guidance in forecasting winds, temperatures, and observed weather in and around the SLRV, given certain synoptic-scale regimes.

Full access
Shawn M. Milrad
,
Kelly Lombardo
,
Eyad H. Atallah
, and
John R. Gyakum

Abstract

The 19–21 June 2013 Alberta flood was the second costliest ($6 billion CAD) natural disaster in Canadian history, trailing only the 2016 Fort McMurray, Alberta, Canada, wildfires. One of the primary drivers was an extreme rainfall event that resulted in 75–150 mm of precipitation in the foothills west of Calgary, Canada. Here, the mesoscale dynamics and thermodynamics that contributed to the extreme rainfall event are elucidated through high-resolution numerical model simulations. In addition, terrain reduction model sensitivity experiments using Gaussian smoothing techniques quantify the importance of orography in producing the extreme rainfall event. It is suggested that the extreme rainfall event was initially characterized by the formation of a surface cyclone on the eastern side of the Canadian Rockies due to quasigeostrophic (QG) mechanisms. Orographic processes and diabatic heating feedbacks maintained the surface cyclone throughout the event, extending the duration of both easterly upslope flow and QG forcing for ascent in the flood region. The long-duration ascent and associated condensational heat release in the flood region vertically redistributed potential vorticity, anchoring and further extending the duration of the surface cyclone, upslope flow, and the rainfall. Although the magnitudes of ascent and precipitation were smaller in 10% and 25% reduced terrain simulations, only a terrain reduction of greater than 25% drastically altered the location and magnitude of the heaviest precipitation and the associated physical mechanisms.

Full access
Shawn M. Milrad
,
Eyad H. Atallah
,
John R. Gyakum
,
Rachael N. Isphording
, and
Jonathon Klepatzki

Abstract

The extreme precipitation index (EPI) is a coupled dynamic–thermodynamic metric that can diagnose extreme precipitation events associated with flow reversal in the mid- to upper troposphere (e.g., Rex and omega blocks, cutoff cyclones, Rossby wave breaks). Recent billion dollar (U.S. dollars) floods across the Northern Hemisphere midlatitudes were associated with flow reversal, as long-duration ascent (dynamics) occurred in the presence of anomalously warm and moist air (thermodynamics). The EPI can detect this potent combination of ingredients and offers advantages over model precipitation forecasts because it relies on mass fields instead of parameterizations. The EPI’s dynamics component incorporates modified versions of two accepted blocking criteria, designed to detect flow reversal during the relatively short duration of extreme precipitation events. The thermodynamic component utilizes standardized anomalies of equivalent potential temperature. Proof-of-concept is demonstrated using four high-impact floods: the 2013 Alberta Flood, Canada’s second costliest natural disaster on record; the 2016 western Europe Flood, which caused the worst flooding in France in a century; the 2000 southern Alpine event responsible for major flooding in Switzerland; and the catastrophic August 2016 Louisiana Flood. EPI frequency maxima are located across the North Atlantic and North Pacific mid- and high latitudes, including near the climatological subtropical jet stream, while secondary maxima are located near the Rockies and Alps. EPI accuracy is briefly assessed using pattern correlation and qualitative associations with an extreme precipitation event climatology. Results show that the EPI may provide potential benefits to flood forecasters, particularly in the 3–10-day range.

Full access
Shawn M. Milrad
,
John R. Gyakum
,
Kelly Lombardo
, and
Eyad H. Atallah
Full access
Shawn M. Milrad
,
John R. Gyakum
,
Eyad H. Atallah
, and
Jennifer F. Smith

Abstract

The priority of an operational forecast center is to issue watches, warnings, and advisories to notify the public about the inherent risks and dangers of a particular event. Occasionally, events occur that do not meet advisory or warning criteria, but still have a substantial impact on human life and property. Short-lived snow bursts are a prime example of such a phenomenon. While these events are typically characterized by small snow accumulations, they often cause very low visibilities and rapidly deteriorating road conditions, both of which are a major hazard to motorists. On the afternoon of 28 January 2010, two such snow bursts moved through the Ottawa River valley and lower St. Lawrence River valley, and created havoc on area roads, resulting in collisions and injuries. Using the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR), these snow bursts were found to be associated with an approaching strong upper-tropospheric trough and the passage of an arctic front. While convection or squall lines are not common in January in Canada, snow bursts are shown to be associated with strong quasigeostrophic forcing for ascent and low-level frontogenesis, in the presence of both convective and conditional symmetric instability. Finally, this paper highlights the need for the development of a standard subadvisory criterion warning of short-lived but high-impact winter weather events, which operational forecasters can issue and quickly disseminate to the general public.

Full access
Shawn M. Milrad
,
John R. Gyakum
,
Kelly Lombardo
, and
Eyad H. Atallah

Abstract

Two high-impact convective snowband events (“snow bursts”) that affected Calgary, Alberta, Canada, are examined to better understand the dynamics and thermodynamics of heavy snowbands not associated with lake effects or the cold conveyor belt of synoptic-scale cyclones. Such events are typically characterized by brief, but heavy, periods of snow; low visibilities; and substantial hazards to automobile and aviation interests. Previous literature on these events has been limited to a few case studies across North America, including near the leeside foothills of the U.S. Rockies. The large-scale dynamics and thermodynamics are investigated using the National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR). Previously, high-resolution convection-explicit Weather Research and Forecasting Model (WRF) simulations have shown some ability to successfully reproduce the dynamics, thermodynamics, and appearance of convective snowbands, with small errors in location and timing. Therefore, WRF simulations are performed for both events, and are evaluated along with the NCEP North American Mesoscale (NAM) model forecasts. Both the NARR and WRF simulations show that while the two snow bursts are similar in appearance, they form as a result of different dynamic and thermodynamic mechanisms. The first event occurs downstream of an upper-tropospheric jet streak in a region of little synoptic-scale ascent, where ageostrophic frontogenesis helps to release conditional, dry symmetric, and inertial instability in an unsaturated environment. The inertial instability is determined to be related to fast flow over upstream high terrain. The second event occurs in a saturated environment in a region of Q-vector convergence (primarily geostrophic frontogenesis), which acts to release conditional, convective, and conditional symmetric instability (CSI).

Full access
Shawn M. Milrad
,
Eyad H. Atallah
,
John R. Gyakum
, and
Giselle Dookhie

Abstract

A precipitation climatology is compiled for warm-season events at Montreal, Québec, Canada, using 6-h precipitation data. A total of 1663 events are recorded and partitioned into three intensity categories (heavy, moderate, and light), based on percentile ranges. Heavy (top 10%) precipitation events (n = 166) are partitioned into four types, using a unique manual synoptic typing based on the divergence of Q-vector components. Type A is related to cyclones and strong synoptic-scale quasigeostrophic (QG) forcing for ascent, with high-θ e air being advected into the Montreal region from the south. Types B and C are dominated by frontogenesis (mesoscale QG forcing for ascent). Specifically, type B events are warm frontal and feature a near-surface temperature inversion, while type C events are cold frontal and associated with the largest-amplitude synoptic-scale precursors of any type. Finally, type D events are associated with little synoptic or mesoscale QG forcing for ascent and, thus, are deemed to be convective events triggered by weak shortwave vorticity maxima moving through a long-wave ridge environment, in the presence of an anomalously warm, humid, and unstable air mass that is conducive to convection. In general, types A and B feature the strongest dynamical forcing for ascent, while types C and D feature the lowest atmospheric stability. Systematic higher precipitation amounts are not preferential to any event type, although a handful of the largest warm-season precipitation events appear to be slow-moving type C (stationary front) cases.

Full access