Search Results

You are looking at 11 - 15 of 15 items for

  • Author or Editor: Sid-Ahmed Boukabara x
  • Refine by Access: All Content x
Clear All Modify Search
Sid-Ahmed Boukabara
,
Kayo Ide
,
Yan Zhou
,
Narges Shahroudi
,
Ross N. Hoffman
,
Kevin Garrett
,
V. Krishna Kumar
,
Tong Zhu
, and
Robert Atlas

Abstract

Observing system simulation experiments (OSSEs) are used to simulate and assess the impacts of new observing systems planned for the future or the impacts of adopting new techniques for exploiting data or for forecasting. This study focuses on the impacts of satellite data on global numerical weather prediction (NWP) systems. Since OSSEs are based on simulations of nature and observations, reliable results require that the OSSE system be validated. This validation involves cycles of assessment and calibration of the individual system components, as well as the complete system, with the end goal of reproducing the behavior of real-data observing system experiments (OSEs). This study investigates the accuracy of the calibration of an OSSE system—here, the Community Global OSSE Package (CGOP) system—before any explicit tuning has been performed by performing an intercomparison of the OSSE summary assessment metrics (SAMs) with those obtained from parallel real-data OSEs. The main conclusion reached in this study is that, based on the SAMs, the CGOP is able to reproduce aspects of the analysis and forecast performance of parallel OSEs despite the simplifications employed in the OSSEs. This conclusion holds even when the SAMs are stratified by various subsets (the tropics only, temperature only, etc.).

Full access
Sid-Ahmed Boukabara
,
Kayo Ide
,
Narges Shahroudi
,
Yan Zhou
,
Tong Zhu
,
Ruifang Li
,
Lidia Cucurull
,
Robert Atlas
,
Sean P. F. Casey
, and
Ross N. Hoffman

Abstract

The simulation of observations—a critical Community Global Observing System Simulation Experiment (OSSE) Package (CGOP) component—is validated first by a comparison of error-free simulated observations for the first 24 h at the start of the nature run (NR) to the real observations for those sensors that operated during that period. Sample results of this validation are presented here for existing low-Earth-orbiting (LEO) infrared (IR) and microwave (MW) brightness temperature (BT) observations, for radio occultation (RO) bending angle observations, and for various types of conventional observations. For sensors not operating at the start of the NR, a qualitative validation is obtained by comparing geographic and statistical characteristics of observations over the initial day for such a sensor and an existing similar sensor. The comparisons agree, with no significant unexplained bias, and to within the uncertainties caused by real observation errors, time and space collocation differences, radiative transfer uncertainties, and differences between the NR and reality. To validate channels of a proposed future MW sensor with no equivalent existing spaceborne sensor channel, multiple linear regression is used to relate these channels to existing similar channels. The validation then compares observations simulated from the NR to observations predicted by the regression relationship applied to actual real observations of the existing channels. Overall, the CGOP simulations of error-free observations from conventional and satellite platforms that make up the global observing system are found to be reasonably accurate and suitable as a starting point for creating realistic simulated observations for OSSEs. These findings complete a critical step in the CGOP validation, thereby reducing the caveats required when interpreting the OSSE results.

Full access
Sid-Ahmed Boukabara
,
Vladimir Krasnopolsky
,
Jebb Q. Stewart
,
Eric S. Maddy
,
Narges Shahroudi
, and
Ross N. Hoffman

Abstract

Artificial intelligence (AI) techniques have had significant recent successes in multiple fields. These fields and the fields of satellite remote sensing and NWP share the same fundamental underlying needs, including signal and image processing, quality control mechanisms, pattern recognition, data fusion, forward and inverse problems, and prediction. Thus, modern AI in general and machine learning (ML) in particular can be positively disruptive and transformational change agents in the fields of satellite remote sensing and NWP by augmenting, and in some cases replacing, elements of the traditional remote sensing, assimilation, and modeling tools. And change is needed to meet the increasing challenges of Big Data, advanced models and applications, and user demands. Future developments, for example, SmallSats and the Internet of Things, will continue the explosion of new environmental data. ML models are highly efficient and in some cases more accurate because of their flexibility to accommodate nonlinearity and/or non-Gaussianity. With that efficiency, ML can help to address the demands put on environmental products for higher accuracy, for higher resolution—spatial, temporal, and vertical, for enhanced conventional medium-range forecasts, for outlooks and predictions on subseasonal to seasonal time scales, and for improvements in the process of issuing advisories and warnings. Using examples from satellite remote sensing and NWP, it is illustrated how ML can accelerate the pace of improvement in environmental data exploitation and weather prediction—first, by complementing existing systems, and second, where appropriate, as an alternative to some components of the NWP processing chain from observations to forecasts.

Full access
Sid-Ahmed Boukabara
,
Isaac Moradi
,
Robert Atlas
,
Sean P. F. Casey
,
Lidia Cucurull
,
Ross N. Hoffman
,
Kayo Ide
,
V. Krishna Kumar
,
Ruifang Li
,
Zhenglong Li
,
Michiko Masutani
,
Narges Shahroudi
,
Jack Woollen
, and
Yan Zhou

Abstract

A modular extensible framework for conducting observing system simulation experiments (OSSEs) has been developed with the goals of 1) supporting decision-makers with quantitative assessments of proposed observing systems investments, 2) supporting readiness for new sensors, 3) enhancing collaboration across the community by making the most up-to-date OSSE components accessible, and 4) advancing the theory and practical application of OSSEs. This first implementation, the Community Global OSSE Package (CGOP), is for short- to medium-range global numerical weather prediction applications. The CGOP is based on a new mesoscale global nature run produced by NASA using the 7-km cubed sphere version of the Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model and the January 2015 operational version of the NOAA global data assimilation (DA) system. CGOP includes procedures to simulate the full suite of observing systems used operationally in the global DA system, including conventional in situ, satellite-based radiance, and radio occultation observations. The methodology of adding a new proposed observation type is documented and illustrated with examples of current interest. The CGOP is designed to evolve, both to improve its realism and to keep pace with the advance of operational systems.

Full access
Sid-Ahmed Boukabara
,
Vladimir Krasnopolsky
,
Stephen G. Penny
,
Jebb Q. Stewart
,
Amy McGovern
,
David Hall
,
John E. Ten Hoeve
,
Jason Hickey
,
Hung-Lung Allen Huang
,
John K. Williams
,
Kayo Ide
,
Philippe Tissot
,
Sue Ellen Haupt
,
Kenneth S. Casey
,
Nikunj Oza
,
Alan J. Geer
,
Eric S. Maddy
, and
Ross N. Hoffman

Abstract

Promising new opportunities to apply artificial intelligence (AI) to the Earth and environmental sciences are identified, informed by an overview of current efforts in the community. Community input was collected at the first National Oceanic and Atmospheric Administration (NOAA) workshop on “Leveraging AI in the Exploitation of Satellite Earth Observations and Numerical Weather Prediction” held in April 2019. This workshop brought together over 400 scientists, program managers, and leaders from the public, academic, and private sectors in order to enable experts involved in the development and adaptation of AI tools and applications to meet and exchange experiences with NOAA experts. Paths are described to actualize the potential of AI to better exploit the massive volumes of environmental data from satellite and in situ sources that are critical for numerical weather prediction (NWP) and other Earth and environmental science applications. The main lessons communicated from community input via active workshop discussions and polling are reported. Finally, recommendations are presented for both scientists and decision-makers to address some of the challenges facing the adoption of AI across all Earth science.

Open access