Search Results

You are looking at 11 - 20 of 49 items for

  • Author or Editor: Steven Businger x
  • Refine by Access: All Content x
Clear All Modify Search
Antti T. Pessi
and
Steven Businger

Abstract

In this paper, the potential of lightning data assimilation to improve NWP forecasts over data-sparse oceans is investigated using, for the first time, a continuous, calibrated lightning data stream. The lightning data employed in this study are from the Pacific Lightning Detection Network/Long-Range Lightning Detection Network (PacNet/LLDN), which has been calibrated for detection efficiency and location accuracy. The method utilizes an empirical lightning–convective rainfall relationship, derived specifically from North Pacific winter storms observed by PacNet/LLDN. The assimilation method nudges the model’s latent heating rates according to rainfall estimates derived from PacNet/LLDN lightning observations. The experiment was designed to be employed in an operational setting. To illustrate the promise of the approach, lightning data from a notable extratropical storm that occurred over the northeast Pacific Ocean in late December 2002 were assimilated into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The storm exhibited a very electrically active cold front with most of the lightning observed 300–1200 km away from the storm center. The storm deepened rapidly (12 hPa in 12 h) and was poorly forecast by the operational models. The assimilation of lightning data generally improved the pressure and wind forecasts, as the validation of the model results using available surface and satellite data revealed. An analysis is presented to illustrate the impact of assimilation of frontal lightning on the storm development and dynamics. The links among deep convection, thermal wind along the front, and cyclogenesis are explicitly explored.

Full access
Steven Businger
and
Richard J. Reed

Abstract

The small-scale and rapid development of polar lows over relatively data-sparse areas results in a special forecast challenge for the operational forecasting community. This paper constitutes a review of recent advances in our understanding of cyclogenesis in polar air masses. The review is primarily comprised of a survey of the observed features of polar lows as documented in a number of case studies presented in the recent literature. The review is organized on the basis of a combination of observational and physical considerations and is aimed at diagnosing common types of developments. Theoretical ideas concerning the origins of polar lows and results of numerical modeling experiments aimed at simulating their development are also summarized. Finally, a discussion of approaches to the operational problem of forecasting polar lows is given.

Full access
Steven A. Stage
and
Joost A. Businger

Abstract

A model is presented for the growth and evolution of a cloud-topped marine boundary layer. In this model the entrainment rate is determined from the turbulence kinetic energy (TKE) budget. It is assumed that the TKE budget can be partitioned according to whether each process produces TKE or converts it into potential energy, and that dissipation is proportional to production. This leads to an entrainment relationship which is considerably different than used in previous cloud-topped models.

This model is used to study an episode of cold-air outbreak over Lake Ontario during the International Field Year for the Great Lakes (IFYGL). The model reproduces changes in potential temperature and dew point as the air crossed the lake and the associated time variation of these parameters at the down-wind shore with an accuracy of better than 1°C. Model and measured soundings closely match, especially with respect to the presence and location of such features as cloud layers. Depth of the mixed layer also was generally well modeled. Use of divergences measured by the lakewide IFYGL buoy network did not give good agreement with the data. It is believed that this indicates that mixed-layer depth is sensitive to divergences at a smaller scale than the size of the lake.

Full access
Steven A. Stage
and
Joost A. Businger

Abstract

The model for the cloud-topped marine boundary layer presented by Stage and Businger (1981) is discussed and compared with previous models. Our model gives a considerably different interpretation of the energetics of the layer and indicates that a much higher fraction (20%) of the layer turbulence kinetic energy production is available to drive entrainment than previously supposed. In a test case, the Lilly (1968) minimum entrainment model gives entrainment rates similar to ours; however, this model is based on physically unrealistic assumptions about layer energetics. It is noted that two soundings from the International Field Year for the Great Lakes (IFYGL) exhibit behavior not allowed by Deardorff’s (1976) model. In these cases our model gives a good fit to the data and Deardorff’s model predicted a boundary layer much deeper than observed. The depth of the layer of radiative cooling at cloud top is shown to be important only if it is a significant fraction of the mixed-layer depth zB . Layer energetics are shown to prevent the cloud-top entrainment instability condition from causing much difference in theentrainment rate

Full access
Joost A. Businger
and
Steven P. Oncley

Abstract

A method is proposed to measure scalar fluxes using conditional sampling. Only the mean concentrations of updraft and downdraft samples, the standard deviation of the vertical velocity, and a coefficient of proportionality, b, need to be known. The method has been simulated from existing time series of the vertical wind component, temperature, and humidity in the surface layer. It is found that b has an almost constant value of 0.6 for both scalars and over a wide stability range. This result encourages application to other scalars and suggests that the method may be used beyond the atmospheric surface layer in the lower part of the planetary boundary layer.

Full access
Antti T. Pessi
and
Steven Businger

Abstract

Lightning data from the Pacific Lightning Detection Network (PacNet) and Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite were compared with TRMM precipitation radar products and latent heating and hydrometeor data. Three years of data over the central North Pacific Ocean were analyzed. The data were divided into winter (October–April) and summer (June–September) seasons. During the winter, the thunderstorms were typically embedded in cold fronts associated with eastward-propagating extratropical cyclones. Summer thunderstorms were triggered by cold upper-level lows associated with the tropical upper-tropospheric trough (TUTT). Concurrent lightning and satellite data associated with the storms were averaged over 0.5° × 0.5° grid cells and a detection efficiency correction model was applied to quantify the lightning rates. The results of the data analysis show a consistent logarithmic increase in convective rainfall rate with increasing lightning rates. Moreover, other storm characteristics such as radar reflectivity, storm height, ice water path, and latent heat show a similar logarithmic increase. Specifically, the reflectivity in the mixed-phase region increased significantly with lightning rate and the lapse rate of Z decreased; both of these features are well-known indicators of the robustness of the cloud electrification process. In addition, the height of the echo tops showed a strong logarithmic correlation with lightning rate. These results have application over data-sparse ocean regions by allowing lightning-rate data to be used as a proxy for related storm properties, which can be assimilated into NWP models.

Full access
James Foster
,
Michael Bevis
, and
Steven Businger

Abstract

The sliding-window technique uses a moving time window to select GPS data for processing. This makes it possible to routinely incorporate the most recently collected data and generate estimates for atmospheric delay or precipitable water in (near) real time. As a consequence of the technique several estimates may be generated for each time epoch, and these multiple estimates can be used to explore and analyze the characteristics of the atmospheric estimates and the effect of the processing model and parameters. Examples of some of the analyses that can be undertaken are presented. Insights into the phenomenology of the atmospheric estimates provided by sliding-window analysis permit the fine-tuning of the GPS processing as well as the possibility of both improving the accuracy of the near-real-time estimates themselves and constraining the errors associated with them. The overlapping data windows and the multiple estimates that characterize the sliding-window method can lead to ambiguity in the meaning of many terms and expressions commonly used in GPS meteorology. In order to prevent confusion in discussions of sliding-window processing, a nomenclature is proposed that formalizes the meaning of the primary terms and defines the geometric and physical relationships between them.

Full access
William H. Bauman III
and
Steven Businger

Space shuttle launches and landings at Kennedy Space Center (KSC) are subject to strict weather-related launch commit criteria and landing weather flight rules. Complex launch commit criteria and end-of-mission landing weather flight rules demand very accurate forecasts and nowcasts (short-term forecasts of less than 2 h) of cloud, wind, visibility, precipitation, turbulence, and thunderstorms prior to shuttle launches and landings.

The challenges to the National Weather Service Spaceflight Meteorology Group forecasters at Johnson Space Center to nowcast and forecast for space shuttle landings and evaluate the landing weather flight rules are discussed. This paper focuses on the forecasts and nowcasts required for a normal end-of-mission and three scenarios for abort landings of a space shuttle at KSC. Specific weather requirements for a potential emergency landing are the dominant cause of weather-related delays to space shuttle launches. Some examples of meteorological techniques and technologies in support of space shuttle landing operations are reviewed. Research to improve nowcasting convective activity in the Cape Canaveral vicinity is discussed, and the particular forecast problem associated with landing a space shuttle during easterly flow regimes is addressed.

Full access
Norbert Schörghofer
,
Steven Businger
, and
Matthias Leopold

Abstract

The coldest places on the Hawaiian island chain are not on the very summits of its tallest volcanoes, Mauna Kea (19.82°N; 4,207 m) and Mauna Loa (19.48°N; 4,169 m), but within craters and caves with perennial ice. Here, we explore unique microclimates in the alpine stone deserts of two tropical island volcanoes, report new temperature extremes for Hawaii, and study the role of microclimates in the preservation of perennial ice bodies. Nocturnal cold-air pools are common in the craters and are responsible for the coldest temperature ever reported from the Hawaiian Islands (–20°C). These cold-air pools are not frequent enough to substantially affect the annual heat budget of the ground, but cold air is frequently trapped between boulders and contributes to freezing conditions in this way. Perennial ice is found beneath even warmer environments in lava tube caves. The lowest annual-mean temperature (–0.7°C) was measured at the distal end of a spectacular ice cave on Mauna Loa, where the outside air temperature averages +8°C. In the current climate, the outside temperature rarely falls below freezing, so the air’s sensible heat cannot contribute to freezing conditions. Considering the effect of recent climate warming and the buoyancy of humid air, cold air that flowed down the lava tubes in winter nights, combined with sublimation cooling, is still a plausible explanation for the perennial ice ponds found there.

Full access
Terrence J. Corrigan Jr.
and
Steven Businger

Abstract

A series of extreme cloudbursts occurred on 14 April 2018 over the northern slopes of the island of Kaua‘i, Hawaii. The storm inundated some areas with 1262 mm (∼50 in.) of rainfall in a 24-h period, eclipsing the previous 24-h U.S. rainfall record of 1100 mm (42 in.) set in Texas in 1979. Three periods of intense rainfall are diagnosed through detailed analysis of National Weather Service operational and special datasets. On the synoptic scale, a slowly southeastward propagating trough aloft over a deep layer of low-level moisture (>40 mm of total precipitable water) produced prolonged instability over Kaua‘i. Enhanced northeast to east low-level flow impacted Kaua‘i’s complex terrain, which includes steep north- and eastward-facing slopes and cirques. The resulting orographic lift initiated deep convection. The wind profile exhibited significant shear in the troposphere and streamwise vorticity within the convective storm inflow. Evidence suggests that large directional shear in the boundary layer, paired with enhanced orographic vertical motion, produced rotating updrafts within the convective storms. Mesoscale rotation is manifest in the radar data during the latter two periods, and reflectivity cores are observed to propagate both to the left and to the right of the mean shear, which is characteristic of supercells. The observations suggest that the terrain configuration in combination with the wind shear separates the area of updrafts from the downdraft section of the storm, resulting in almost continuous heavy rainfall over Waipā Garden.

Full access