Search Results

You are looking at 11 - 20 of 38 items for

  • Author or Editor: T. B. Smith x
  • Refine by Access: All Content x
Clear All Modify Search
J. C. Dietrich
,
S. Bunya
,
J. J. Westerink
,
B. A. Ebersole
,
J. M. Smith
,
J. H. Atkinson
,
R. Jensen
,
D. T. Resio
,
R. A. Luettich
,
C. Dawson
,
V. J. Cardone
,
A. T. Cox
,
M. D. Powell
,
H. J. Westerink
, and
H. J. Roberts

Abstract

Hurricanes Katrina and Rita were powerful storms that impacted southern Louisiana and Mississippi during the 2005 hurricane season. In , the authors describe and validate a high-resolution coupled riverine flow, tide, wind, wave, and storm surge model for this region. Herein, the model is used to examine the evolution of these hurricanes in more detail. Synoptic histories show how storm tracks, winds, and waves interacted with the topography, the protruding Mississippi River delta, east–west shorelines, manmade structures, and low-lying marshes to develop and propagate storm surge. Perturbations of the model, in which the waves are not included, show the proportional importance of the wave radiation stress gradient induced setup.

Full access
W. L. Smith
,
H. E. Rvercomb
,
H. B. Howell
,
H. M. Woolf
,
R. O. Knuteson
,
R G. Decker
,
M. J. Lynch
,
E. R. Westwater
,
R. G. Strauch
,
K. P. Moran
,
B. Stankov
,
M. J. Falls
,
J. Jordan
,
M. Jacobsen
,
W. F. Dabberdt
,
R. McBeth
,
G. Albright
,
C. Paneitz
,
G. Wright
,
P. T. May
, and
M. T. Decker

During the week 29 October–4 November 1988, a Ground-based Atmospheric Profiling Experiment (GAPEX) was conducted at Denver Stapleton International Airport. The objective of GAPEX was to acquire and analyze atomspheric-temperature and moisture-profile data from state-of-the-art remote sensors. The sensors included a six-spectral-channel, passive Microwave Profiler (MWP), a passive, infrared High-Resolution Interferometer Sounder (HIS) that provides more than 1500 spectral channels, and an active Radio Acoustic Sounding System (RASS). A Cross-Chain Loran Atmospheric Sounding System (CLASS) was used to provide research-quality in situ thermodynamic observations to verify the accuracy and resolution characteristics of each of the three remote sensors. The first results of the project are presented here to inform the meteorological community of the progress achieved during the GAPEX field phase. These results also serve to demonstrate the excellent prospects for an accurate, continuous thermodynamic profiling system to complement NOAA's forthcoming operational wind profiler.

Full access
J.-P. Vernier
,
T. D. Fairlie
,
T. Deshler
,
M. Venkat Ratnam
,
H. Gadhavi
,
B. S. Kumar
,
M. Natarajan
,
A. K. Pandit
,
S. T. Akhil Raj
,
A. Hemanth Kumar
,
A. Jayaraman
,
A. K. Singh
,
N. Rastogi
,
P. R. Sinha
,
S. Kumar
,
S. Tiwari
,
T. Wegner
,
N. Baker
,
D. Vignelles
,
G. Stenchikov
,
I. Shevchenko
,
J. Smith
,
K. Bedka
,
A. Kesarkar
,
V. Singh
,
J. Bhate
,
V. Ravikiran
,
M. Durga Rao
,
S. Ravindrababu
,
A. Patel
,
H. Vernier
,
F. G. Wienhold
,
H. Liu
,
T. N. Knepp
,
L. Thomason
,
J. Crawford
,
L. Ziemba
,
J. Moore
,
S. Crumeyrolle
,
M. Williamson
,
G. Berthet
,
F. Jégou
, and
J.-B. Renard

Abstract

We describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm–3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m–3. Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.

Full access
R. O. Knuteson
,
H. E. Revercomb
,
F. A. Best
,
N. C. Ciganovich
,
R. G. Dedecker
,
T. P. Dirkx
,
S. C. Ellington
,
W. F. Feltz
,
R. K. Garcia
,
H. B. Howell
,
W. L. Smith
,
J. F. Short
, and
D. C. Tobin

Abstract

A ground-based Fourier transform spectrometer has been developed to measure the atmospheric downwelling infrared radiance spectrum at the earth's surface with high absolute accuracy. The Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program. This paper emphasizes the key features of the UW-SSEC instrument design that contribute to meeting the AERI instrument requirements for the ARM Program. These features include a highly accurate radiometric calibration system, an instrument controller that provides continuous and autonomous operation, an extensive data acquisition system for monitoring calibration temperatures and instrument health, and a real-time data processing system. In particular, focus is placed on design issues crucial to meeting the ARM requirements for radiometric calibration, spectral calibration, noise performance, and operational reliability. The detailed performance characteristics of the AERI instruments built for the ARM Program are described in a companion paper.

Full access
R. O. Knuteson
,
H. E. Revercomb
,
F. A. Best
,
N. C. Ciganovich
,
R. G. Dedecker
,
T. P. Dirkx
,
S. C. Ellington
,
W. F. Feltz
,
R. K. Garcia
,
H. B. Howell
,
W. L. Smith
,
J. F. Short
, and
D. C. Tobin

Abstract

The Atmospheric Emitted Radiance Interferometer (AERI) instrument was developed for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program by the University of Wisconsin Space Science and Engineering Center (UW-SSEC). The infrared emission spectra measured by the instrument have the sensitivity and absolute accuracy needed for atmospheric remote sensing and climate studies. The instrument design is described in a companion paper. This paper describes in detail the measured performance characteristics of the AERI instruments built for the ARM Program. In particular, the AERI systems achieve an absolute radiometric calibration of better than 1% (3σ) of ambient radiance, with a reproducibility of better than 0.2%. The knowledge of the AERI spectral calibration is better than 1.5 ppm (1σ) in the wavenumber range 400– 3000 cm−1.

Full access
William D. Collins
,
Cecilia M. Bitz
,
Maurice L. Blackmon
,
Gordon B. Bonan
,
Christopher S. Bretherton
,
James A. Carton
,
Ping Chang
,
Scott C. Doney
,
James J. Hack
,
Thomas B. Henderson
,
Jeffrey T. Kiehl
,
William G. Large
,
Daniel S. McKenna
,
Benjamin D. Santer
, and
Richard D. Smith

Abstract

The Community Climate System Model version 3 (CCSM3) has recently been developed and released to the climate community. CCSM3 is a coupled climate model with components representing the atmosphere, ocean, sea ice, and land surface connected by a flux coupler. CCSM3 is designed to produce realistic simulations over a wide range of spatial resolutions, enabling inexpensive simulations lasting several millennia or detailed studies of continental-scale dynamics, variability, and climate change. This paper will show results from the configuration used for climate-change simulations with a T85 grid for the atmosphere and land and a grid with approximately 1° resolution for the ocean and sea ice. The new system incorporates several significant improvements in the physical parameterizations. The enhancements in the model physics are designed to reduce or eliminate several systematic biases in the mean climate produced by previous editions of CCSM. These include new treatments of cloud processes, aerosol radiative forcing, land–atmosphere fluxes, ocean mixed layer processes, and sea ice dynamics. There are significant improvements in the sea ice thickness, polar radiation budgets, tropical sea surface temperatures, and cloud radiative effects. CCSM3 can produce stable climate simulations of millennial duration without ad hoc adjustments to the fluxes exchanged among the component models. Nonetheless, there are still systematic biases in the ocean–atmosphere fluxes in coastal regions west of continents, the spectrum of ENSO variability, the spatial distribution of precipitation in the tropical oceans, and continental precipitation and surface air temperatures. Work is under way to extend CCSM to a more accurate and comprehensive model of the earth's climate system.

Full access
J. C. Dietrich
,
J. J. Westerink
,
A. B. Kennedy
,
J. M. Smith
,
R. E. Jensen
,
M. Zijlema
,
L. H. Holthuijsen
,
C. Dawson
,
R. A. Luettich Jr.
,
M. D. Powell
,
V. J. Cardone
,
A. T. Cox
,
G. W. Stone
,
H. Pourtaheri
,
M. E. Hope
,
S. Tanaka
,
L. G. Westerink
,
H. J. Westerink
, and
Z. Cobell

Abstract

Hurricane Gustav (2008) made landfall in southern Louisiana on 1 September 2008 with its eye never closer than 75 km to New Orleans, but its waves and storm surge threatened to flood the city. Easterly tropical-storm-strength winds impacted the region east of the Mississippi River for 12–15 h, allowing for early surge to develop up to 3.5 m there and enter the river and the city’s navigation canals. During landfall, winds shifted from easterly to southerly, resulting in late surge development and propagation over more than 70 km of marshes on the river’s west bank, over more than 40 km of Caernarvon marsh on the east bank, and into Lake Pontchartrain to the north. Wind waves with estimated significant heights of 15 m developed in the deep Gulf of Mexico but were reduced in size once they reached the continental shelf. The barrier islands further dissipated the waves, and locally generated seas existed behind these effective breaking zones.

The hardening and innovative deployment of gauges since Hurricane Katrina (2005) resulted in a wealth of measured data for Gustav. A total of 39 wind wave time histories, 362 water level time histories, and 82 high water marks were available to describe the event. Computational models—including a structured-mesh deepwater wave model (WAM) and a nearshore steady-state wave (STWAVE) model, as well as an unstructured-mesh “simulating waves nearshore” (SWAN) wave model and an advanced circulation (ADCIRC) model—resolve the region with unprecedented levels of detail, with an unstructured mesh spacing of 100–200 m in the wave-breaking zones and 20–50 m in the small-scale channels. Data-assimilated winds were applied using NOAA’s Hurricane Research Division Wind Analysis System (H*Wind) and Interactive Objective Kinematic Analysis (IOKA) procedures. Wave and surge computations from these models are validated comprehensively at the measurement locations ranging from the deep Gulf of Mexico and along the coast to the rivers and floodplains of southern Louisiana and are described and quantified within the context of the evolution of the storm.

Full access
David J. Stensrud
,
Nusrat Yussouf
,
Michael E. Baldwin
,
Jeffery T. McQueen
,
Jun Du
,
Binbin Zhou
,
Brad Ferrier
,
Geoffrey Manikin
,
F. Martin Ralph
,
James M. Wilczak
,
Allen B. White
,
Irina Djlalova
,
Jian-Wen Bao
,
Robert J. Zamora
,
Stanley G. Benjamin
,
Patricia A. Miller
,
Tracy Lorraine Smith
,
Tanya Smirnova
, and
Michael F. Barth

The New England High-Resolution Temperature Program seeks to improve the accuracy of summertime 2-m temperature and dewpoint temperature forecasts in the New England region through a collaborative effort between the research and operational components of the National Oceanic and Atmospheric Administration (NOAA). The four main components of this program are 1) improved surface and boundary layer observations for model initialization, 2) special observations for the assessment and improvement of model physical process parameterization schemes, 3) using model forecast ensemble data to improve upon the operational forecasts for near-surface variables, and 4) transfering knowledge gained to commercial weather services and end users. Since 2002 this program has enhanced surface temperature observations by adding 70 new automated Cooperative Observer Program (COOP) sites, identified and collected data from over 1000 non-NOAA mesonet sites, and deployed boundary layer profilers and other special instrumentation throughout the New England region to better observe the surface energy budget. Comparisons of these special datasets with numerical model forecasts indicate that near-surface temperature errors are strongly correlated to errors in the model-predicted radiation fields. The attenuation of solar radiation by aerosols is one potential source of the model radiation bias. However, even with these model errors, results from bias-corrected ensemble forecasts are more accurate than the operational model output statistics (MOS) forecasts for 2-m temperature and dewpoint temperature, while also providing reliable forecast probabilities. Discussions with commerical weather vendors and end users have emphasized the potential economic value of these probabilistic ensemble-generated forecasts.

Full access
Rolf H. Reichle
,
Gabrielle J. M. De Lannoy
,
Qing Liu
,
Randal D. Koster
,
John S. Kimball
,
Wade T. Crow
,
Joseph V. Ardizzone
,
Purnendu Chakraborty
,
Douglas W. Collins
,
Austin L. Conaty
,
Manuela Girotto
,
Lucas A. Jones
,
Jana Kolassa
,
Hans Lievens
,
Robert A. Lucchesi
, and
Edmond B. Smith

Abstract

The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0–5 cm) and root-zone (0–100 cm) soil moisture and related land surface variables from 31 March 2015 to present with ~2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (OF) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of ~0.37 K for the OF Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the OF residuals (under ~3 K), the soil moisture increments (under ~0.01 m3 m−3), and the surface soil temperature increments (under ~1 K). Typical instantaneous values are ~6 K for OF residuals, ~0.01 (~0.003) m3 m−3 for surface (root zone) soil moisture increments, and ~0.6 K for surface soil temperature increments. The OF diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The OF autocorrelations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

Full access
G. de Boer
,
C. Diehl
,
J. Jacob
,
A. Houston
,
S. W. Smith
,
P. Chilson
,
D. G. Schmale III
,
J. Intrieri
,
J. Pinto
,
J. Elston
,
D. Brus
,
O. Kemppinen
,
A. Clark
,
D. Lawrence
,
S. C. C. Bailey
,
M.P. Sama
,
A. Frazier
,
C. Crick
,
V. Natalie
,
E. Pillar-Little
,
P. Klein
,
S. Waugh
,
J. K. Lundquist
,
L. Barbieri
,
S. T. Kral
,
A. A. Jensen
,
C. Dixon
,
S. Borenstein
,
D. Hesselius
,
K. Human
,
P. Hall
,
B. Argrow
,
T. Thornberry
,
R. Wright
, and
J. T. Kelly
Full access