Search Results

You are looking at 11 - 13 of 13 items for

  • Author or Editor: T. G. Shepherd x
  • Refine by Access: All Content x
Clear All Modify Search
Antje Weisheimer
,
Laura H. Baker
,
Jochen Bröcker
,
Chaim I. Garfinkel
,
Steven C. Hardiman
,
Dan L. R. Hodson
,
Tim N. Palmer
,
Jon I. Robson
,
Adam A. Scaife
,
James A. Screen
,
Theodore G. Shepherd
,
Doug M. Smith
, and
Rowan T. Sutton
Open access
Neal Butchart
,
I. Cionni
,
V. Eyring
,
T. G. Shepherd
,
D. W. Waugh
,
H. Akiyoshi
,
J. Austin
,
C. Brühl
,
M. P. Chipperfield
,
E. Cordero
,
M. Dameris
,
R. Deckert
,
S. Dhomse
,
S. M. Frith
,
R. R. Garcia
,
A. Gettelman
,
M. A. Giorgetta
,
D. E. Kinnison
,
F. Li
,
E. Mancini
,
C. McLandress
,
S. Pawson
,
G. Pitari
,
D. A. Plummer
,
E. Rozanov
,
F. Sassi
,
J. F. Scinocca
,
K. Shibata
,
B. Steil
, and
W. Tian

Abstract

The response of stratospheric climate and circulation to increasing amounts of greenhouse gases (GHGs) and ozone recovery in the twenty-first century is analyzed in simulations of 11 chemistry–climate models using near-identical forcings and experimental setup. In addition to an overall global cooling of the stratosphere in the simulations (0.59 ± 0.07 K decade−1 at 10 hPa), ozone recovery causes a warming of the Southern Hemisphere polar lower stratosphere in summer with enhanced cooling above. The rate of warming correlates with the rate of ozone recovery projected by the models and, on average, changes from 0.8 to 0.48 K decade−1 at 100 hPa as the rate of recovery declines from the first to the second half of the century. In the winter northern polar lower stratosphere the increased radiative cooling from the growing abundance of GHGs is, in most models, balanced by adiabatic warming from stronger polar downwelling. In the Antarctic lower stratosphere the models simulate an increase in low temperature extremes required for polar stratospheric cloud (PSC) formation, but the positive trend is decreasing over the twenty-first century in all models. In the Arctic, none of the models simulates a statistically significant increase in Arctic PSCs throughout the twenty-first century. The subtropical jets accelerate in response to climate change and the ozone recovery produces a westward acceleration of the lower-stratospheric wind over the Antarctic during summer, though this response is sensitive to the rate of recovery projected by the models. There is a strengthening of the Brewer–Dobson circulation throughout the depth of the stratosphere, which reduces the mean age of air nearly everywhere at a rate of about 0.05 yr decade−1 in those models with this diagnostic. On average, the annual mean tropical upwelling in the lower stratosphere (∼70 hPa) increases by almost 2% decade−1, with 59% of this trend forced by the parameterized orographic gravity wave drag in the models. This is a consequence of the eastward acceleration of the subtropical jets, which increases the upward flux of (parameterized) momentum reaching the lower stratosphere in these latitudes.

Full access
S. Pawson
,
K. Kodera
,
K. Hamilton
,
T. G. Shepherd
,
S. R. Beagley
,
B. A. Boville
,
J. D. Farrara
,
T. D. A. Fairlie
,
A. Kitoh
,
W. A. Lahoz
,
U. Langematz
,
E. Manzini
,
D. H. Rind
,
A. A. Scaife
,
K. Shibata
,
P. Simon
,
R. Swinbank
,
L. Takacs
,
R. J. Wilson
,
J. A. Al-Saadi
,
M. Amodei
,
M. Chiba
,
L. Coy
,
J. de Grandpré
,
R. S. Eckman
,
M. Fiorino
,
W. L. Grose
,
H. Koide
,
J. N. Koshyk
,
D. Li
,
J. Lerner
,
J. D. Mahlman
,
N. A. McFarlane
,
C. R. Mechoso
,
A. Molod
,
A. O'Neill
,
R. B. Pierce
,
W. J. Randel
,
R. B. Rood
, and
F. Wu

To investigate the effects of the middle atmosphere on climate, the World Climate Research Programme is supporting the project “Stratospheric Processes and their Role in Climate” (SPARC). A central theme of SPARC, to examine model simulations of the coupled troposphere–middle atmosphere system, is being performed through the initiative called GRIPS (GCM-Reality Intercomparison Project for SPARC). In this paper, an overview of the objectives of GRIPS is given. Initial activities include an assessment of the performance of middle atmosphere climate models, and preliminary results from this evaluation are presented here. It is shown that although all 13 models evaluated represent most major features of the mean atmospheric state, there are deficiencies in the magnitude and location of the features, which cannot easily be traced to the formulation (resolution or the parameterizations included) of the models. Most models show a cold bias in all locations, apart from the tropical tropopause region where they can be either too warm or too cold. The strengths and locations of the major jets are often misrepresented in the models. Looking at three-dimensional fields reveals, for some models, more severe deficiencies in the magnitude and positioning of the dominant structures (such as the Aleutian high in the stratosphere), although undersampling might explain some of these differences from observations. All the models have shortcomings in their simulations of the present-day climate, which might limit the accuracy of predictions of the climate response to ozone change and other anomalous forcing.

Full access