Search Results

You are looking at 11 - 14 of 14 items for

  • Author or Editor: Thomas Reichler x
  • Refine by Access: All Content x
Clear All Modify Search
Bowen Zhao, Thomas Reichler, Courtenay Strong, and Cecile Penland

Abstract

The authors identify an interdecadal oscillatory mode of the North Atlantic atmosphere–ocean system in a general circulation model (GFDL CM2.1) via a linear inverse model (LIM). The oscillation mechanism is mostly embedded in the subpolar gyre: anomalous advection generates density anomalies in the eastern subpolar gyre, which propagate along the mean gyre circulation and reach the subpolar gyre center around 10 years later, when associated anomalous advection of the opposite sign starts the other half cycle. As density anomalies reach the Labrador Sea deep convection region, Atlantic meridional overturning circulation (AMOC) anomalies are also induced. Both the gyre and AMOC anomalies then propagate equatorward slowly, following the advection of density anomalies. The oscillation is further demonstrated to be more likely an ocean-only mode while excited by the atmospheric forcing; in particular, it can be approximated as a linearly driven damped oscillator that is partly excited by the North Atlantic Oscillation (NAO). The slowly evolving interdecadal oscillation significantly improves and prolongs the LIM’s prediction skill of sea surface temperature (SST) evolution.

Full access
Thomas Reichler, Paul J. Kushner, and Lorenzo M. Polvani

Abstract

A simple atmospheric general circulation model (GCM) is used to investigate the transient response of the stratosphere–troposphere system to externally imposed pulses of lower-tropospheric planetary wave activity. The atmospheric GCM is a dry, hydrostatic, global primitive-equations model, whose circulation includes an active polar vortex and a tropospheric jet maintained by baroclinic eddies. Planetary wave activity pulses are generated by a perturbation of the solid lower boundary that grow and decay over a period of 10 days. The planetary wave pulses propagate upward and break in the stratosphere. Subsequently, a zonal-mean circulation anomaly propagates downward, often into the troposphere, at lags of 30–100 days. The evolution of the response is found to be dependent on the state of the stratosphere–troposphere system at the time the pulse is generated. In particular, on the basis of a large ensemble of these simulations, it is found that the length of time the signal takes to propagate downward from the stratosphere is controlled by initial anomalies in the zonal-mean circulation and in the zonal-mean wave drag. Criteria based on these anomaly patterns can be used, therefore, to predict the long-term surface response of the stratosphere–troposphere system to a planetary wave pulse up to 90 days after the pulse is generated. In an independent test, it is verified that the initial states that most strongly satisfy these criteria respond in the expected way to the lower-tropospheric wave activity pulse.

Full access
Shih-Yu Wang, Robert R. Gillies, and Thomas Reichler

Abstract

This study investigates the meteorological conditions associated with multidecadal drought cycles as revealed by lake level fluctuation of the Great Salt Lake (GSL). The analysis combined instrumental, proxy, and simulation datasets, including the Twentieth Century Reanalysis version 2, the North American Drought Atlas, and a 2000-yr control simulation of the GFDL Coupled Model, version 2.1 (CM2.1). Statistical evidence from the spectral coherence analysis points to a phase shift amounting to 6–9 yr between the wet–dry cycles in the Great Basin and the warmcool phases of the interdecadal Pacific oscillation (IPO). Diagnoses of the sea surface temperature and atmospheric circulation anomalies attribute such a phase shift to a distinctive teleconnection wave train that develops during the transition points between the IPO’s warm and cool phases. This teleconnection wave train forms recurrent circulation anomalies centered over the southeastern Gulf of Alaska; this directs moisture flux across the Great Basin and subsequently drives wet–dry conditions over the Great Basin and the GSL watershed. The IPO life cycle therefore modulates local droughts–pluvials in a quarter-phase manner.

Full access
Hann-Ming Henry Juang, Shyh-Chin Chen, Songyou Hong, Hideki Kanamaru, Thomas Reichler, Takeshi Enomoto, Dian Putrasahan, Bruce T. Anderson, Sasha Gershunov, Haiqin Li, Kei Yoshimura, Nikolaus Buenning, and Diane Boomer
Full access