Search Results
You are looking at 11 - 12 of 12 items for
- Author or Editor: Thomas W. Horst x
- Refine by Access: All Content x
Abstract
The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.
Abstract
The second Meteor Crater Experiment (METCRAX II) was conducted in October 2013 at Arizona’s Meteor Crater. The experiment was designed to investigate nighttime downslope windstorm−type flows that form regularly above the inner southwest sidewall of the 1.2-km diameter crater as a southwesterly mesoscale katabatic flow cascades over the crater rim. The objective of METCRAX II is to determine the causes of these strong, intermittent, and turbulent inflows that bring warm-air intrusions into the southwest part of the crater. This article provides an overview of the scientific goals of the experiment; summarizes the measurements, the crater topography, and the synoptic meteorology of the study period; and presents initial analysis results.
The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile tower instrumented with turbulence instrumentation, fast and slow chemical sensors, aerosol samplers, and radiation instrumentation. A highresolution scanning backscatter lidar characterized the turbulence structure above and within the canopy; a scanning Doppler lidar, mini sodar/radio acoustic sounding system (RASS), and a new helicopter-observing platform provided details of the PBL-scale flow. Ultimately, the CHATS dataset will lead to improved parameterizations of energy and scalar transport to and from vegetation, which are a critical component of global and regional land, atmosphere, and chemical models. This manuscript presents an overview of the experiment, documents the regime sampled, and highlights some preliminary key findings.
The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile tower instrumented with turbulence instrumentation, fast and slow chemical sensors, aerosol samplers, and radiation instrumentation. A highresolution scanning backscatter lidar characterized the turbulence structure above and within the canopy; a scanning Doppler lidar, mini sodar/radio acoustic sounding system (RASS), and a new helicopter-observing platform provided details of the PBL-scale flow. Ultimately, the CHATS dataset will lead to improved parameterizations of energy and scalar transport to and from vegetation, which are a critical component of global and regional land, atmosphere, and chemical models. This manuscript presents an overview of the experiment, documents the regime sampled, and highlights some preliminary key findings.