Search Results
You are looking at 11 - 20 of 31 items for
- Author or Editor: Timothy Lang x
- Refine by Access: All Content x
Abstract
On a few occasions during the summer and fall of 2002, and again in the fall of 2003, the Colorado State University (CSU)–University of Chicago–Illinois State Water Survey (CHILL) S-band polarimetric Doppler radar observed dumbbell-shaped radar echo patterns in precipitation-free air returns. Dumbbell shaped refers to two distinct and quasi-symmetrical regions of echo surrounding the radar. These were horizontally widespread (thousands of square kilometers) layers, with the highest reflectivity factors (sometimes >20 dBZ) arranged approximately perpendicular to the direction of the mean wind. The echoes coincided with strongly positive differential reflectivity (Z DR) measurements (often >4 dB). Most interestingly, the echoes were elevated near the top of the boundary layer in the 2–3-km-AGL vertical range. Assuming a horizontally uniform layer of scatterers, the observations suggest that targets aloft are quasi prolate in shape and aligned horizontally along the direction of the mean wind. The echoes tended to occur on days when nocturnal inversions persisted into the following day, and solenoidal-like circulations (easterly upslope near the surface, and westerly flow aloft) existed. In some cases, the echoes exhibited diurnal behavior, with dumbbell-shaped echoes only occurring during the day and a more azimuthally uniform echo at night. On occasion, the echoes were coincident with the occurrence of widespread smoke from nearby forest fires. It is suggested that these echoes, which are rare for the CSU–CHILL coverage region, were caused by insects flying in a preferred direction, with the trigger for the migration being either the forest fires or oncoming winter. The local meteorological conditions likely affected the structure of these echoes.
Abstract
On a few occasions during the summer and fall of 2002, and again in the fall of 2003, the Colorado State University (CSU)–University of Chicago–Illinois State Water Survey (CHILL) S-band polarimetric Doppler radar observed dumbbell-shaped radar echo patterns in precipitation-free air returns. Dumbbell shaped refers to two distinct and quasi-symmetrical regions of echo surrounding the radar. These were horizontally widespread (thousands of square kilometers) layers, with the highest reflectivity factors (sometimes >20 dBZ) arranged approximately perpendicular to the direction of the mean wind. The echoes coincided with strongly positive differential reflectivity (Z DR) measurements (often >4 dB). Most interestingly, the echoes were elevated near the top of the boundary layer in the 2–3-km-AGL vertical range. Assuming a horizontally uniform layer of scatterers, the observations suggest that targets aloft are quasi prolate in shape and aligned horizontally along the direction of the mean wind. The echoes tended to occur on days when nocturnal inversions persisted into the following day, and solenoidal-like circulations (easterly upslope near the surface, and westerly flow aloft) existed. In some cases, the echoes exhibited diurnal behavior, with dumbbell-shaped echoes only occurring during the day and a more azimuthally uniform echo at night. On occasion, the echoes were coincident with the occurrence of widespread smoke from nearby forest fires. It is suggested that these echoes, which are rare for the CSU–CHILL coverage region, were caused by insects flying in a preferred direction, with the trigger for the migration being either the forest fires or oncoming winter. The local meteorological conditions likely affected the structure of these echoes.
Abstract
This study examines the spatial and temporal variability in the diurnal cycle of clouds and precipitation tied to topography within the North American Monsoon Experiment (NAME) tier-I domain during the 2004 NAME enhanced observing period (EOP, July–August), with a focus on the implications for high-resolution precipitation estimation within the core of the monsoon. Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University–National Center for Atmospheric Research (CSU–NCAR) version 2 radar composites over the southern NAME tier-I domain are compared with satellite rainfall estimates from the NOAA Climate Prediction Center Morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) operational and Tropical Rainfall Measuring Mission (TRMM) 3B42 research satellite estimates along the western slopes of the Sierra Madre Occidental (SMO). The rainfall estimates are examined alongside hourly images of high-resolution Geostationary Operational Environmental Satellite (GOES) 11-μm brightness temperatures.
An abrupt shallow to deep convective transition is found over the SMO, with the development of shallow convective systems just before noon on average over the SMO high peaks, with deep convection not developing until after 1500 local time on the SMO western slopes. This transition is shown to be contemporaneous with a relative underestimation (overestimation) of precipitation during the period of shallow (deep) convection from both IR and microwave precipitation algorithms due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths. This characteristic life cycle in cloud structure and microphysics has important implications for ice-scattering microwave and infrared precipitation estimates, and thus hydrological applications using high-resolution precipitation data, as well as the study of the dynamics of convective systems in complex terrain.
Abstract
This study examines the spatial and temporal variability in the diurnal cycle of clouds and precipitation tied to topography within the North American Monsoon Experiment (NAME) tier-I domain during the 2004 NAME enhanced observing period (EOP, July–August), with a focus on the implications for high-resolution precipitation estimation within the core of the monsoon. Ground-based precipitation retrievals from the NAME Event Rain Gauge Network (NERN) and Colorado State University–National Center for Atmospheric Research (CSU–NCAR) version 2 radar composites over the southern NAME tier-I domain are compared with satellite rainfall estimates from the NOAA Climate Prediction Center Morphing technique (CMORPH) and Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN) operational and Tropical Rainfall Measuring Mission (TRMM) 3B42 research satellite estimates along the western slopes of the Sierra Madre Occidental (SMO). The rainfall estimates are examined alongside hourly images of high-resolution Geostationary Operational Environmental Satellite (GOES) 11-μm brightness temperatures.
An abrupt shallow to deep convective transition is found over the SMO, with the development of shallow convective systems just before noon on average over the SMO high peaks, with deep convection not developing until after 1500 local time on the SMO western slopes. This transition is shown to be contemporaneous with a relative underestimation (overestimation) of precipitation during the period of shallow (deep) convection from both IR and microwave precipitation algorithms due to changes in the depth and vigor of shallow clouds and mixed-phase cloud depths. This characteristic life cycle in cloud structure and microphysics has important implications for ice-scattering microwave and infrared precipitation estimates, and thus hydrological applications using high-resolution precipitation data, as well as the study of the dynamics of convective systems in complex terrain.
Abstract
The NASA Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites was successfully launched into low Earth orbit on 15 December 2016. Each satellite carries a radar receiver that measures GPS signals scattered from the surface. Wind speed over the ocean is determined from distortions in the signal caused by wind-driven surface roughness. GPS operates at a sufficiently low frequency to allow for propagation through all precipitation, including the extreme rain rates present in the eyewall of tropical cyclones. The spacing and orbit of the satellites were chosen to optimize frequent sampling of tropical cyclones. In this study, we characterize the CYGNSS ocean surface wind speed measurements by their uncertainty, dynamic range, sensitivity to precipitation, spatial resolution, spatial and temporal sampling, and data latency. The current status of each of these properties is examined and potential future improvements are discussed. In addition, examples are given of current science investigations that make use of the data.
Abstract
The NASA Cyclone Global Navigation Satellite System (CYGNSS) constellation of eight satellites was successfully launched into low Earth orbit on 15 December 2016. Each satellite carries a radar receiver that measures GPS signals scattered from the surface. Wind speed over the ocean is determined from distortions in the signal caused by wind-driven surface roughness. GPS operates at a sufficiently low frequency to allow for propagation through all precipitation, including the extreme rain rates present in the eyewall of tropical cyclones. The spacing and orbit of the satellites were chosen to optimize frequent sampling of tropical cyclones. In this study, we characterize the CYGNSS ocean surface wind speed measurements by their uncertainty, dynamic range, sensitivity to precipitation, spatial resolution, spatial and temporal sampling, and data latency. The current status of each of these properties is examined and potential future improvements are discussed. In addition, examples are given of current science investigations that make use of the data.
Abstract
By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission Core Observatory satellite’s suite of sensors and by the ground-based S-band Next Generation Weather Radar (NEXRAD) network over the continental United States, proxies for the identification of hail are developed from the GPM Core Observatory satellite observables. The full capabilities of the GPM Core Observatory are tested by analyzing more than 20 observables and adopting the hydrometeor classification on the basis of ground-based polarimetric measurements being truth. The proxies have been tested using the critical success index (CSI) as a verification measure. The hail-detection algorithm that is based on the mean Ku-band reflectivity in the mixed-phase layer performs the best of all considered proxies (CSI of 45%). Outside the dual-frequency precipitation radar swath, the polarization-corrected temperature at 18.7 GHz shows the greatest potential for hail detection among all GPM Microwave Imager channels (CSI of 26% at a threshold value of 261 K). When dual-variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka bands outperforms all of the other proxies, with a CSI of 49%. The best-performing radar–radiometer algorithm is based on the mixed-phase reflectivity at Ku band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm that is based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.
Abstract
By exploiting an abundant number of extreme storms observed simultaneously by the Global Precipitation Measurement (GPM) mission Core Observatory satellite’s suite of sensors and by the ground-based S-band Next Generation Weather Radar (NEXRAD) network over the continental United States, proxies for the identification of hail are developed from the GPM Core Observatory satellite observables. The full capabilities of the GPM Core Observatory are tested by analyzing more than 20 observables and adopting the hydrometeor classification on the basis of ground-based polarimetric measurements being truth. The proxies have been tested using the critical success index (CSI) as a verification measure. The hail-detection algorithm that is based on the mean Ku-band reflectivity in the mixed-phase layer performs the best of all considered proxies (CSI of 45%). Outside the dual-frequency precipitation radar swath, the polarization-corrected temperature at 18.7 GHz shows the greatest potential for hail detection among all GPM Microwave Imager channels (CSI of 26% at a threshold value of 261 K). When dual-variable proxies are considered, the combination involving the mixed-phase reflectivity values at both Ku and Ka bands outperforms all of the other proxies, with a CSI of 49%. The best-performing radar–radiometer algorithm is based on the mixed-phase reflectivity at Ku band and on the brightness temperature (TB) at 10.7 GHz (CSI of 46%). When only radiometric data are available, the algorithm that is based on the TBs at 36.6 and 166 GHz is the most efficient, with a CSI of 27.5%.
Abstract
Radar data from the 2004 North American Monsoon Experiment (NAME) enhanced observing period were used to investigate diurnal trends and vertical structure of precipitating features relative to local terrain. Two-dimensional composites of reflectivity and rain rate, created from the two Servicio Meteorológico Nacional (SMN; Mexican Weather Service) C-band Doppler radars and NCAR’s S-band polarimetric Doppler radar (S-Pol), were divided into four elevation groups: over water, 0–1000 m (MSL), 1000–2000 m, and greater than 2000 m. Analysis of precipitation frequency and average rainfall intensity using these composites reveals a strong diurnal trend in precipitation similar to that observed by the NAME Event Rain Gauge Network. Precipitation occurs most frequently during the afternoon over the Sierra Madre Occidental (SMO), with the peak frequency moving over the lower elevations by evening. Also, the precipitation events over the lower elevations are less frequent but of greater intensity (rain rate) than those over the SMO. Precipitation echoes were partitioned into convective and stratiform components to allow for examination of vertical characteristics of convection using data from S-Pol. Analyses of reflectivity profiles and echo-top heights confirm that convection over the lower terrain is more intense and vertically developed than convection over the SMO. Warm-cloud depths, estimated from the Colorado State University–NAME upper-air and surface gridded analyses are, on average, 2 times as deep over the lower terrain as compared with over the SMO. Using a simplified stochastic model for drop growth, it is shown that these differences in warm-cloud depths could possibly explain the observed elevation-dependent trends in precipitation intensity.
Abstract
Radar data from the 2004 North American Monsoon Experiment (NAME) enhanced observing period were used to investigate diurnal trends and vertical structure of precipitating features relative to local terrain. Two-dimensional composites of reflectivity and rain rate, created from the two Servicio Meteorológico Nacional (SMN; Mexican Weather Service) C-band Doppler radars and NCAR’s S-band polarimetric Doppler radar (S-Pol), were divided into four elevation groups: over water, 0–1000 m (MSL), 1000–2000 m, and greater than 2000 m. Analysis of precipitation frequency and average rainfall intensity using these composites reveals a strong diurnal trend in precipitation similar to that observed by the NAME Event Rain Gauge Network. Precipitation occurs most frequently during the afternoon over the Sierra Madre Occidental (SMO), with the peak frequency moving over the lower elevations by evening. Also, the precipitation events over the lower elevations are less frequent but of greater intensity (rain rate) than those over the SMO. Precipitation echoes were partitioned into convective and stratiform components to allow for examination of vertical characteristics of convection using data from S-Pol. Analyses of reflectivity profiles and echo-top heights confirm that convection over the lower terrain is more intense and vertically developed than convection over the SMO. Warm-cloud depths, estimated from the Colorado State University–NAME upper-air and surface gridded analyses are, on average, 2 times as deep over the lower terrain as compared with over the SMO. Using a simplified stochastic model for drop growth, it is shown that these differences in warm-cloud depths could possibly explain the observed elevation-dependent trends in precipitation intensity.
Abstract
Tropical convection during the onset of two Madden–Julian oscillation (MJO) events, in October and December of 2011, was simulated using the Weather Research and Forecasting (WRF) Model. Observations from the Dynamics of the MJO (DYNAMO) field campaign were assimilated into the WRF Model for an improved simulation of the mesoscale features of tropical convection. The WRF simulations with the assimilation of DYNAMO data produced realistic representations of mesoscale convection related to westerly wind bursts (WWBs) as well as downdraft-induced gust fronts. An end-to-end simulator (E2ES) for the Cyclone Global Navigation Satellite System (CYGNSS) mission was then applied to the WRF dataset, producing simulated CYGNSS near-surface wind speed data. The results indicated that CYGNSS could detect mesoscale wind features such as WWBs and gust fronts even in the presence of simulated heavy precipitation. This study has two primary conclusions as a consequence: 1) satellite simulators could be used to examine a mission’s capabilities for accomplishing secondary tasks and 2) CYGNSS likely will provide benefits to future tropical oceanic field campaigns that should be considered during their planning processes.
Abstract
Tropical convection during the onset of two Madden–Julian oscillation (MJO) events, in October and December of 2011, was simulated using the Weather Research and Forecasting (WRF) Model. Observations from the Dynamics of the MJO (DYNAMO) field campaign were assimilated into the WRF Model for an improved simulation of the mesoscale features of tropical convection. The WRF simulations with the assimilation of DYNAMO data produced realistic representations of mesoscale convection related to westerly wind bursts (WWBs) as well as downdraft-induced gust fronts. An end-to-end simulator (E2ES) for the Cyclone Global Navigation Satellite System (CYGNSS) mission was then applied to the WRF dataset, producing simulated CYGNSS near-surface wind speed data. The results indicated that CYGNSS could detect mesoscale wind features such as WWBs and gust fronts even in the presence of simulated heavy precipitation. This study has two primary conclusions as a consequence: 1) satellite simulators could be used to examine a mission’s capabilities for accomplishing secondary tasks and 2) CYGNSS likely will provide benefits to future tropical oceanic field campaigns that should be considered during their planning processes.
Abstract
Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.
Abstract
Pyrocumulus clouds above three Colorado wildfires (Hewlett Gulch, High Park, and Waldo Canyon; all during the summer of 2012) electrified and produced localized intracloud discharges whenever the smoke plumes grew above 10 km MSL (approximately −45°C). Vertical development occurred during periods of rapid wildfire growth, as indicated by the shortwave infrared channel on a geostationary satellite, as well as by incident reports. The lightning discharges were detected by a three-dimensional lightning mapping network. Based on Doppler and polarimetric radar observations, they likely were caused by ice-based electrification processes that did not involve significant amounts of high-density graupel. Plumes that did not feature significant amounts of radar-inferred ice at high altitudes did not produce lightning, which means lightning observations may assist in diagnosing pyrocumulus features that could affect the radiative characteristics and chemical composition of the upper troposphere. The lightning was not detected by the National Lightning Detection Network, implying that pyrocumulus lightning may occur more frequently than past studies (which lacked access to detailed intracloud information) might suggest. Given the known spatial and temporal advantages provided by lightning networks over radar and satellite data, the results also indicate a possible new application for lightning data in monitoring wildfire state.
Abstract
The evolution of an African easterly wave is described using ground-based radar and ancillary datasets from three locations in West Africa: Niamey, Niger (continental), Dakar, Senegal (coastal), and Praia, Republic of Cape Verde (oceanic). The data were collected during the combined African Monsoon Multidisciplinary Analyses (AMMA) and NASA AMMA (NAMMA) campaigns in August–September 2006.
Two precipitation events originated within the wave circulation and propagated with the wave across West Africa. Mesoscale convective systems (MCSs) associated with these events were identified at all three sites ahead of, within, and behind the 700-mb wave trough. An additional propagating event was indentified that originated east of the wave and moved through the wave circulation. The MCS activity associated with this event did not show any appreciable change resulting from its interaction with the wave. The MCS characteristics at each site were different, likely due to a combination of life cycle effects and changes in relative phasing between the propagating systems and the position of low-level convergence and thermodynamic instability associated with the wave. At the ocean and coastal sites, the most intense convection occurred ahead of the wave trough where both high CAPE and low-level convergence were concentrated. At the continental site, convection was relatively weak owing to the fact that the wave dynamics and thermodynamics were not in sync when the systems passed through Niamey. The only apparent effect of the wave on MCS activity at the continental site was to extend the period of precipitation activity during one of the events that passed through coincident with the 700-mb wave trough. Convective organization at the land sites was primarily in the form of squall lines and linear MCSs oriented perpendicular to the low-level shear. The organization at the oceanic site was more complicated, transitioning from linear MCSs to widespread stratiform cloud with embedded convection. The precipitation activity was also much longer lived at the oceanic site due to the wave becoming nearly stationary near the Cape Verdes, providing an environment supportive of deep convection for an extended period.
Abstract
The evolution of an African easterly wave is described using ground-based radar and ancillary datasets from three locations in West Africa: Niamey, Niger (continental), Dakar, Senegal (coastal), and Praia, Republic of Cape Verde (oceanic). The data were collected during the combined African Monsoon Multidisciplinary Analyses (AMMA) and NASA AMMA (NAMMA) campaigns in August–September 2006.
Two precipitation events originated within the wave circulation and propagated with the wave across West Africa. Mesoscale convective systems (MCSs) associated with these events were identified at all three sites ahead of, within, and behind the 700-mb wave trough. An additional propagating event was indentified that originated east of the wave and moved through the wave circulation. The MCS activity associated with this event did not show any appreciable change resulting from its interaction with the wave. The MCS characteristics at each site were different, likely due to a combination of life cycle effects and changes in relative phasing between the propagating systems and the position of low-level convergence and thermodynamic instability associated with the wave. At the ocean and coastal sites, the most intense convection occurred ahead of the wave trough where both high CAPE and low-level convergence were concentrated. At the continental site, convection was relatively weak owing to the fact that the wave dynamics and thermodynamics were not in sync when the systems passed through Niamey. The only apparent effect of the wave on MCS activity at the continental site was to extend the period of precipitation activity during one of the events that passed through coincident with the 700-mb wave trough. Convective organization at the land sites was primarily in the form of squall lines and linear MCSs oriented perpendicular to the low-level shear. The organization at the oceanic site was more complicated, transitioning from linear MCSs to widespread stratiform cloud with embedded convection. The precipitation activity was also much longer lived at the oceanic site due to the wave becoming nearly stationary near the Cape Verdes, providing an environment supportive of deep convection for an extended period.
Abstract
Concurrent measurements from the CSU-CHILL multiparameter Doppler radar, the Office National d’Etudes et de Recherches Aérospatiales VHF lightning interferometer, and the National Lightning Detection Network, obtained during phase A of the Stratosphere–Troposphere Experiments: Radiation, Aerosols, Ozone (STERAO-A) field project, provided a unique dataset with which to study the relationships between convective storm microphysics and associated lightning. Two storms have been examined in detail in this study: 10 and 12 July 1996. Both storms were long lived, existing in some form for over 4 h apiece, and produced very low cloud-to-ground (CG) lightning flash rates, in particular negative CG flash rates (generally <1 min−1 and often no CG flashes for periods ranging from 10 to almost 30 min), during all or a portion of their lifetimes while simultaneously producing relatively high intracloud (IC) flash rates (>30 min−1 at peak). For both storms, radar reflectivity intensity and the production of hail were anticorrelated with the production of significant negative cloud-to-ground lightning. These observations are shown to be consistent with an elevated charge hypothesis and suggest a possible way of correlating updraft speed, hail, and storm severity to CG and IC flash rates.
Abstract
Concurrent measurements from the CSU-CHILL multiparameter Doppler radar, the Office National d’Etudes et de Recherches Aérospatiales VHF lightning interferometer, and the National Lightning Detection Network, obtained during phase A of the Stratosphere–Troposphere Experiments: Radiation, Aerosols, Ozone (STERAO-A) field project, provided a unique dataset with which to study the relationships between convective storm microphysics and associated lightning. Two storms have been examined in detail in this study: 10 and 12 July 1996. Both storms were long lived, existing in some form for over 4 h apiece, and produced very low cloud-to-ground (CG) lightning flash rates, in particular negative CG flash rates (generally <1 min−1 and often no CG flashes for periods ranging from 10 to almost 30 min), during all or a portion of their lifetimes while simultaneously producing relatively high intracloud (IC) flash rates (>30 min−1 at peak). For both storms, radar reflectivity intensity and the production of hail were anticorrelated with the production of significant negative cloud-to-ground lightning. These observations are shown to be consistent with an elevated charge hypothesis and suggest a possible way of correlating updraft speed, hail, and storm severity to CG and IC flash rates.
Abstract
Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation Radiometer (AMPR) have yielded physically realistic brightness temperatures (T b ) from the Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization T b were converted to horizontally and vertically polarized T b via dual-polarization deconvolution, and linear regression equations were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using simulated AMPR T b and modeled atmospheric profiles. These equations were tested using AMPR T b collected during four OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results from the same dataset, while WV and WS were also compared with in situ data. Geophysical calculations using simulated T b yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS root-mean-square deviations (RMSD) were 0.11 mm, 1.28 mm, and 1.11 m s−1, respectively, with median absolute deviations (MedAD) of 2.26 × 10−2 mm, 0.22 mm, and 0.55 m s−1, respectively. When applied to OLYMPEX/RADEX data, the new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 × 10−2 mm, 2.00 mm, and 2.35 m s−1, respectively, and MedAD were 2.88 × 10−2 mm, 1.14 mm, and 1.82 m s−1, respectively. WV MedAD between the new equations and dropsondes were 2.10 and 1.80 mm at the time and location of minimum dropsonde altitude, respectively, while WS MedAD were 1.15 and 1.53 m s−1, respectively, further indicating the utility of these equations.
Abstract
Recent upgrades, calibration, and scan-angle bias reductions to the Advanced Microwave Precipitation Radiometer (AMPR) have yielded physically realistic brightness temperatures (T b ) from the Olympic Mountains Experiment and Radar Definition Experiment (OLYMPEX/RADEX) dataset. Measured mixed-polarization T b were converted to horizontally and vertically polarized T b via dual-polarization deconvolution, and linear regression equations were developed to retrieve integrated cloud liquid water (CLW), water vapor (WV), and 10-m wind speed (WS) using simulated AMPR T b and modeled atmospheric profiles. These equations were tested using AMPR T b collected during four OLYMPEX/RADEX cases; the resulting geophysical values were compared with independent retrieval (1DVAR) results from the same dataset, while WV and WS were also compared with in situ data. Geophysical calculations using simulated T b yielded relatively low retrieval and crosstalk errors when compared with modeled profiles; average CLW, WV, and WS root-mean-square deviations (RMSD) were 0.11 mm, 1.28 mm, and 1.11 m s−1, respectively, with median absolute deviations (MedAD) of 2.26 × 10−2 mm, 0.22 mm, and 0.55 m s−1, respectively. When applied to OLYMPEX/RADEX data, the new retrieval equations compared well with 1DVAR; CLW, WV, and WS RMSD were 9.95 × 10−2 mm, 2.00 mm, and 2.35 m s−1, respectively, and MedAD were 2.88 × 10−2 mm, 1.14 mm, and 1.82 m s−1, respectively. WV MedAD between the new equations and dropsondes were 2.10 and 1.80 mm at the time and location of minimum dropsonde altitude, respectively, while WS MedAD were 1.15 and 1.53 m s−1, respectively, further indicating the utility of these equations.