Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: Todd K. Schaack x
  • Refine by Access: All Content x
Clear All Modify Search
Tom H. Zapotocny, Allen J. Lenzen, Donald R. Johnson, Todd K. Schaack, and Fred M. Reames


Five- and 10-day inert trace constituent distributions prognostically simulated with the University of Wisconsin (UW) hybrid isentropic–sigma (θσ) model, the nominally identical UW sigma (σ) model, and the National Center for Atmospheric Research Community Climate Model 2 (CCM2) are analyzed and compared in this study. The UW θσ and σ gridpoint models utilize the flux form of the primitive equations, while CCM2 is based on the spectral representation and uses semi-Lagrangian transport (SLT) for trace constituents. Results are also compared against a version of the CCM that uses spectral transport for the trace constituent. These comparisons 1) contrast the spatial and temporal evolution of the filamentary transport of inert trace constituents simulated with the UW θσ and σ models against a “state of the art” GCM under both isentropic and nonisentropic conditions and 2) examine the ability of the models to conserve the initial trace constituent maximum value during 10-day integrations.

Results show that the spatial distributions of trace constituent evolve in a similar manner, regardless of the transport scheme or model type. However, when compared to the UW θσ model’s ability to simulate filamentary structure and conserve the initial trace constituent maximum value, results from the other models in this study indicate substantial spurious dispersion. The more accurate conservation demonstrated with the UW θσ model is especially noticeable within extratropical amplifying baroclinic waves, and it stems from the dominance of two-dimensional, quasi-horizontal isentropic exchange processes in a stratified baroclinic atmosphere. This condition, which largely precludes spurious numerical dispersion associated with vertical advection, is unique to isentropic coordinates. Conservation of trace constituent maxima in sigma coordinates suffers from the complexity of, and inherent need for, resolving three-dimensional transport in the presence of vertical wind shear during baroclinic amplification, a condition leading to spurious vertical dispersion. The experiments of this study also indicate that the shape-preserving SLT scheme used in CCM2 further reduces conservation of the initial maximum value when compared to the spectral transport of trace constituents, although the patterns are more coherent and the Gibbs phenomenon is eliminated.

Full access
Jack Fishman, Kevin W. Bowman, John P. Burrows, Andreas Richter, Kelly V. Chance, David P. Edwards, Randall V. Martin, Gary A. Morris, R. Bradley Pierce, Jerald R. Ziemke, Jassim A. Al-Saadi, John K. Creilson, Todd K. Schaack, and Anne M. Thompson

We review the progress of tropospheric trace gas observations and address the need for additional measurement capabilities as recommended by the National Research Council. Tropospheric measurements show pollution in the Northern Hemisphere as a result of fossil fuel burning and a strong seasonal dependence with the largest amounts of carbon monoxide and nitrogen dioxide in the winter and spring. In the summer, when photochemistry is most intense, photochemically generated ozone is found in large concentrations over and downwind from where anthropogenic sources are largest, such as the eastern United States and eastern China. In the tropics and the subtropics, where photon flux is strong throughout the year, trace gas concentrations are driven by the abundance of the emissions. The largest single tropical source of pollution is biomass burning, as can be seen readily in carbon monoxide measurements, but lightning and biogenic trace gases may also contribute to trace gas variability. Although substantive progress has been achieved in seasonal and global mapping of a few tropospheric trace gases, satellite trace gas observations with considerably better temporal and spatial resolution are essential to forecasting air quality at the spatial and temporal scales required by policy makers. The concurrent use of atmospheric composition measurements for both scientific and operational purposes is a new paradigm for the atmospheric chemistry community. The examples presented illustrate both the promise and challenge of merging satellite information with in situ observations in state-of-the-art data assimilation models.

Full access