Search Results

You are looking at 11 - 17 of 17 items for

  • Author or Editor: Travis M. Smith x
  • Refine by Access: All Content x
Clear All Modify Search
Travis M. Smith, Valliappa Lakshmanan, Gregory J. Stumpf, Kiel L. Ortega, Kurt Hondl, Karen Cooper, Kristin M. Calhoun, Darrel M. Kingfield, Kevin L. Manross, Robert Toomey, and Jeff Brogden

Abstract

The Multi-Radar Multi-Sensor (MRMS) system, which was developed at the National Severe Storms Laboratory and the University of Oklahoma, was made operational in 2014 at the National Centers for Environmental Prediction. The MRMS system consists of the Warning Decision Support System–Integrated Information suite of severe weather and aviation products, and the quantitative precipitation estimation products created by the National Mosaic and Multi-sensor Quantitative Precipitation Estimation system. Products created by the MRMS system are at a spatial resolution of approximately 1 km, with 33 vertical levels, updating every 2 min over the conterminous United States and southern Canada. This paper describes initial operating capabilities for the severe weather and aviation products that include a three-dimensional mosaic of reflectivity; guidance for hail, tornado, and lightning hazards; and nowcasts of storm location, height, and intensity.

Full access
Christopher D. Karstens, Greg Stumpf, Chen Ling, Lesheng Hua, Darrel Kingfield, Travis M. Smith, James Correia Jr., Kristin Calhoun, Kiel Ortega, Chris Melick, and Lans P. Rothfusz

Abstract

A proposed new method for hazard identification and prediction was evaluated with forecasters in the National Oceanic and Atmospheric Administration Hazardous Weather Testbed during 2014. This method combines hazard-following objects with forecaster-issued trends of exceedance probabilities to produce probabilistic hazard information, as opposed to the static, deterministic polygon and attendant text product methodology presently employed by the National Weather Service to issue severe thunderstorm and tornado warnings. Three components of the test bed activities are discussed: usage of the new tools, verification of storm-based warnings and probabilistic forecasts from a control–test experiment, and subjective feedback on the proposed paradigm change. Forecasters were able to quickly adapt to the new tools and concepts and ultimately produced probabilistic hazard information in a timely manner. The probabilistic forecasts from two severe hail events tested in a control–test experiment were more skillful than storm-based warnings and were found to have reliability in the low-probability spectrum. False alarm area decreased while the traditional verification metrics degraded with increasing probability thresholds. The latter finding is attributable to a limitation in applying the current verification methodology to probabilistic forecasts. Relaxation of on-the-fence decisions exposed a need to provide information for hazard areas below the decision-point thresholds of current warnings. Automated guidance information was helpful in combating potential workload issues, and forecasters raised a need for improved guidance and training to inform consistent and reliable forecasts.

Full access
Jidong Gao, Travis M. Smith, David J. Stensrud, Chenghao Fu, Kristin Calhoun, Kevin L. Manross, Jeffrey Brogden, Valliappa Lakshmanan, Yunheng Wang, Kevin W. Thomas, Keith Brewster, and Ming Xue

Abstract

A real-time, weather-adaptive three-dimensional variational data assimilation (3DVAR) system has been adapted for the NOAA Warn-on-Forecast (WoF) project to incorporate all available radar observations within a moveable analysis domain. The key features of the system include 1) incorporating radar observations from multiple Weather Surveillance Radars-1988 Doppler (WSR-88Ds) with NCEP forecast products as a background state, 2) the ability to automatically detect and analyze severe local hazardous weather events at 1-km horizontal resolution every 5 min in real time based on the current weather situation, and 3) the identification of strong circulation patterns embedded in thunderstorms. Although still in the early development stage, the system performed very well within the NOAA's Hazardous Weather Testbed (HWT) Experimental Warning Program during preliminary testing in spring 2010 when many severe weather events were successfully detected and analyzed. This study represents a first step in the assessment of this type of 3DVAR analysis for use in severe weather warnings. The eventual goal of this real-time 3DVAR system is to help meteorologists better track severe weather events and eventually provide better warning information to the public, ultimately saving lives and reducing property damage.

Full access
Lans P. Rothfusz, Russell Schneider, David Novak, Kimberly Klockow-McClain, Alan E. Gerard, Chris Karstens, Gregory J. Stumpf, and Travis M. Smith

Abstract

Recommendations by the National Research Council (NRC), the National Institute of Standards and Technology (NIST), and Weather-Ready Nation workshop participants have encouraged the National Oceanic and Atmospheric Administration (NOAA) and the broader weather enterprise to explore and expand the use of probabilistic information to convey weather forecast uncertainty. Forecasting a Continuum of Environmental Threats (FACETs) is a concept being explored by NOAA to address those recommendations and also potentially shift the National Weather Service (NWS) from (primarily) teletype-era, deterministic watch–warning products to high-resolution, probabilistic hazard information (PHI) spanning periods from days (and longer) to within minutes of high-impact weather and water events. FACETs simultaneously i) considers a reinvention of the NWS hazard forecasting and communication paradigm so as to deliver multiscale, user-specific probabilistic guidance from numerical weather prediction ensembles and ii) provides a comprehensive framework to organize the physical, social, and behavioral sciences, the technology, and the practices needed to achieve that reinvention. The first applications of FACETs have focused on thunderstorm phenomena, but the FACETs concept is envisioned to extend to the attributes of any environmental hazards that can be described probabilistically (e.g., winter, tropical, and aviation weather). This paper introduces the FACETs vision, the motivation for its creation, the research and development under way to explore that vision, its relevance to operational forecasting and society, and possible strategies for implementation.

Open access
Travis M. Smith, Jidong Gao, Kristin M. Calhoun, David J. Stensrud, Kevin L. Manross, Kiel L. Ortega, Chenghao Fu, Darrel M. Kingfield, Kimberly L. Elmore, Valliappa Lakshmanan, and Christopher Riedel

Abstract

Forecasters and research meteorologists tested a real-time three-dimensional variational data assimilation (3DVAR) system in the Hazardous Weather Testbed during the springs of 2010–12 to determine its capabilities to assist in the warning process for severe storms. This storm-scale system updates a dynamically consistent three-dimensional wind field every 5 min, with horizontal and average vertical grid spacings of 1 km and 400 m, respectively. The system analyzed the life cycles of 218 supercell thunderstorms on 27 event days during these experiments, producing multiple products such as vertical velocity, vertical vorticity, and updraft helicity. These data are compared to multiradar–multisensor data from the Warning Decision Support System–Integrated Information to document the performance characteristics of the system, such as how vertical vorticity values compare to azimuthal shear fields calculated directly from Doppler radial velocity. Data are stratified by range from the nearest radar, as well as by the number of radars entering into the analysis of a particular storm. The 3DVAR system shows physically realistic trends of updraft speed and vertical vorticity for a majority of cases. Improvements are needed to better estimate the near-surface winds when no radar is nearby and to improve the timeliness of the input data. However, the 3DVAR wind field information provides an integrated look at storm structure that may be of more use to forecasters than traditional radar-based proxies used to infer severe weather potential.

Full access
Christopher D. Karstens, James Correia Jr., Daphne S. LaDue, Jonathan Wolfe, Tiffany C. Meyer, David R. Harrison, John L. Cintineo, Kristin M. Calhoun, Travis M. Smith, Alan E. Gerard, and Lans P. Rothfusz

Abstract

Providing advance warning for impending severe convective weather events (i.e., tornadoes, hail, wind) fundamentally requires an ability to predict and/or detect these hazards and subsequently communicate their potential threat in real time. The National Weather Service (NWS) provides advance warning for severe convective weather through the issuance of tornado and severe thunderstorm warnings, a system that has remained relatively unchanged for approximately the past 65 years. Forecasting a Continuum of Environmental Threats (FACETs) proposes a reinvention of this system, transitioning from a deterministic product-centric paradigm to one based on probabilistic hazard information (PHI) for hazardous weather events. Four years of iterative development and rapid prototyping in the National Oceanic and Atmospheric Administration (NOAA) Hazardous Weather Testbed (HWT) with NWS forecasters and partners has yielded insights into this new paradigm by discovering efficient ways to generate, inform, and utilize a continuous flow of information through the development of a human–machine mix. Forecasters conditionally used automated object-based guidance within four levels of automation to issue deterministic products containing PHI. Forecasters accomplished this task in a timely manner while focusing on communication and conveying forecast confidence, elements considered necessary by emergency managers. Observed annual increases in the usage of first-guess probabilistic guidance by forecasters were related to improvements made to the prototyped software, guidance, and techniques. However, increasing usage of automation requires improvements in guidance, data integration, and data visualization to garner trust more effectively. Additional opportunities exist to address limitations in procedures for motion derivation and geospatial mapping of subjective probability.

Full access
Brian J. Butterworth, Ankur R. Desai, Stefan Metzger, Philip A. Townsend, Mark D. Schwartz, Grant W. Petty, Matthias Mauder, Hannes Vogelmann, Christian G. Andresen, Travis J. Augustine, Timothy H. Bertram, William O. J. Brown, Michael Buban, Patricia Cleary, David J. Durden, Christopher R. Florian, Trevor J. Iglinski, Eric L. Kruger, Kathleen Lantz, Temple R. Lee, Tilden P. Meyers, James K. Mineau, Erik R. Olson, Steven P. Oncley, Sreenath Paleri, Rosalyn A. Pertzborn, Claire Pettersen, David M. Plummer, Laura D. Riihimaki, Eliceo Ruiz Guzman, Joseph Sedlar, Elizabeth N. Smith, Johannes Speidel, Paul C. Stoy, Matthias Sühring, Jonathan E. Thom, David D. Turner, Michael P. Vermeuel, Timothy J. Wagner, Zhien Wang, Luise Wanner, Loren D. White, James M. Wilczak, Daniel B. Wright, and Ting Zheng

Abstract

The Chequamegon Heterogeneous Ecosystem Energy-Balance Study Enabled by a High-Density Extensive Array of Detectors 2019 (CHEESEHEAD19) is an ongoing National Science Foundation project based on an intensive field campaign that occurred from June to October 2019. The purpose of the study is to examine how the atmospheric boundary layer (ABL) responds to spatial heterogeneity in surface energy fluxes. One of the main objectives is to test whether lack of energy balance closure measured by eddy covariance (EC) towers is related to mesoscale atmospheric processes. Finally, the project evaluates data-driven methods for scaling surface energy fluxes, with the aim to improve model–data comparison and integration. To address these questions, an extensive suite of ground, tower, profiling, and airborne instrumentation was deployed over a 10 km × 10 km domain of a heterogeneous forest ecosystem in the Chequamegon–Nicolet National Forest in northern Wisconsin, United States, centered on an existing 447-m tower that anchors an AmeriFlux/NOAA supersite (US-PFa/WLEF). The project deployed one of the world’s highest-density networks of above-canopy EC measurements of surface energy fluxes. This tower EC network was coupled with spatial measurements of EC fluxes from aircraft; maps of leaf and canopy properties derived from airborne spectroscopy, ground-based measurements of plant productivity, phenology, and physiology; and atmospheric profiles of wind, water vapor, and temperature using radar, sodar, lidar, microwave radiometers, infrared interferometers, and radiosondes. These observations are being used with large-eddy simulation and scaling experiments to better understand submesoscale processes and improve formulations of subgrid-scale processes in numerical weather and climate models.

Open access