Search Results

You are looking at 11 - 12 of 12 items for

  • Author or Editor: William D. Smyth x
  • Refine by Access: All Content x
Clear All Modify Search
Hieu T. Pham
,
William D. Smyth
,
Sutanu Sarkar
, and
James N. Moum

Abstract

The seasonal cycles of the various oceanic and atmospheric factors influencing the deep cycle of turbulence in the eastern Pacific cold tongue are explored. Moored observations at 140°W have shown seasonal variability in the stratification, velocity shear, and turbulence above the Pacific Equatorial Undercurrent (EUC). In boreal spring, the thermocline and EUC shoal and turbulence decreases. Marginal instability (clustering of the local gradient Richardson number around the critical value of 1/4), evident throughout the rest of the year, has not been detected during spring. While the daily averaged turbulent energy dissipation in the EUC is weakest during the spring, it is not clear whether the diurnal fluctuations that define the deep cycle cease. Large-eddy simulations are performed using climatological initial and boundary conditions representative of January, April, July, and October. Deep cycle turbulence is evident in all cases; the mechanism remains the same, and the maximum turbulence levels are similar. In the April simulation, however, the deep cycle is confined to the uppermost ~30 m, explaining why it has not been detected in moored microstructure observations.

Full access
James N. Moum
,
Simon P. de Szoeke
,
William D. Smyth
,
James B. Edson
,
H. Langley DeWitt
,
Aurélie J. Moulin
,
Elizabeth J. Thompson
,
Christopher J. Zappa
,
Steven A. Rutledge
,
Richard H. Johnson
, and
Christopher W. Fairall

The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.

Full access