Search Results

You are looking at 11 - 20 of 91 items for

  • Author or Editor: Xuguang Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Bo Huang
and
Xuguang Wang

Abstract

Valid-time-shifting (VTS) ensembles, either in the form of full ensemble members (VTSM) or ensemble perturbations (VTSP), were investigated as inexpensive means to increase ensemble size in the NCEP Global Forecast System (GFS) hybrid four-dimensional ensemble–variational (4DEnVar) data assimilation system. VTSM is designed to sample timing and/or phase errors, while VTSP can eliminate spurious covariances through temporal smoothing. When applying a shifting time interval (τ = 1, 2, or 3 h), VTSM and VTSP triple the baseline background ensemble size from 80 (ENS80) to 240 (ENS240) in the EnVar variational update, where the overall cost is only increased by 23%–27%, depending on the selected τ. Experiments during a 10-week summer period show the best-performing VTSP with τ = 2 h improves global temperature and wind forecasts out to 5 days over ENS80. This could be attributed to the improved background ensemble distribution, ensemble correlation accuracy, and increased effective rank in the populated background ensemble. VTSM generally degrades global forecasts in the troposphere. Improved global forecasts above 100 hPa by VTSM may benefit from the increased spread that alleviates the underdispersiveness of the original background ensemble at such levels. Both VTSM and VTSP improve tropical cyclone track forecasts over ENS80. Although VTSM and VTSP are much less expensive than directly running a 240-member background ensemble, owing to the improved ensemble covariances, the best-performing VTSP with τ = 1 h performs comparably or only slightly worse than ENS240. The best-performing VTSM with τ = 3 h even shows more accurate track forecasts than ENS240, likely contributed to by its better sampling of timing and/or phase errors for cases with small ensemble track spread.

Full access
Aaron Johnson
and
Xuguang Wang

Abstract

Four case studies from the Plains Elevated Convection at Night (PECAN) field experiment are used to investigate the impacts of horizontal and vertical resolution, and vertical mixing parameterization, on predictions of bore structure and upscale impacts of bores on their mesoscale environment. The reduction of environmental convective inhibition (CIN) created by the bore is particularly emphasized. Simulations are run with horizontal grid spacings ranging from 250 to 1000 m, as well as 50 m for one case study, different vertical level configurations, and different closure models for the vertical turbulent mixing at 250-m horizontal resolution. The 11 July case study was evaluated in greatest detail because it was the best observed case and has been the focus of a previous study. For this case, it is found that 250-m grid spacing improves upon 1-km grid spacing, LES configuration provides further improvement, and enhanced low-level vertical resolution also provides further improvement in terms of qualitative agreement between simulated and observed bore structure. Reducing LES grid spacing further to 50 m provided very little additional advantage. Only the LES experiments properly resolved the upscale influence of reduced low-level CIN. Expanding on the 11 July case study, three other cases from PECAN with diverse observed bore structures were also evaluated. Similar to the 11 July case, enhancing the horizontal and vertical grid spacings, and using the LES closure model for vertical turbulent mixing, all contributed to improved simulations of both the bores themselves and the larger-scale modification of CIN to varying degrees on different cases.

Full access
Xu Lu
and
Xuguang Wang

Abstract

Short-term spinup for strong storms is a known difficulty for the operational Hurricane Weather Research and Forecasting (HWRF) Model after assimilating high-resolution inner-core observations. Our previous study associated this short-term intensity prediction issue with the incompatibility between the HWRF Model and the data assimilation (DA) analysis. While improving physics and resolution of the model was found to be helpful, this study focuses on further improving the intensity predictions through the four-dimensional incremental analysis update (4DIAU). In the traditional 4DIAU, increments are predetermined by subtracting background forecasts from analyses. Such predetermined increments implicitly require linear evolution assumption during the update, which are hardly valid for rapidly evolving hurricanes. To confirm the hypothesis, a corresponding 4D analysis nudging (4DAN) method, which uses online increments is first compared with the 4DIAU in an oscillation model. Then, variants of 4DIAU are proposed to improve its application for nonlinear systems. Next, 4DIAU, 4DAN and their proposed improvements are implemented into the HWRF 4DEnVar DA system and are investigated with Hurricane Patricia (2015). Results from both the oscillation model and HWRF Model show that 1) the predetermined increments in 4DIAU can be detrimental when there are discrepancies between the updated and background forecasts during a nonlinear evolution; 2) 4DAN can improve the performance of incremental update upon 4DIAU, but its improvements are limited by the overfiltering; 3) relocating initial background before the incremental update can improve the corresponding traditional methods; and 4) the feature-relative 4DIAU method improves the incremental update the most and produces the best track and intensity predictions for Patricia among all experiments.

Full access
Xuguang Wang
and
Ting Lei

Abstract

A four-dimensional (4D) ensemble–variational data assimilation (DA) system (4DEnsVar) was developed, building upon the infrastructure of the gridpoint statistical interpolation (GSI)-based hybrid DA system. 4DEnsVar used ensemble perturbations valid at multiple time periods throughout the DA window to estimate 4D error covariances during the variational minimization, avoiding the tangent linear and adjoint of the forecast model. The formulation of its implementation in GSI was described. The performance of the system was investigated by evaluating the global forecasts and hurricane track forecasts produced by the NCEP Global Forecast System (GFS) during the 5-week summer period assimilating operational conventional and satellite data. The newly developed system was used to address a few questions regarding 4DEnsVar. 4DEnsVar in general improved upon its 3D counterpart, 3DEnsVar. At short lead times, the improvement over the Northern Hemisphere extratropics was similar to that over the Southern Hemisphere extratropics. At longer lead times, 4DEnsVar showed more improvement in the Southern Hemisphere than in the Northern Hemisphere. The 4DEnsVar showed less impact over the tropics. The track forecasts of 16 tropical cyclones initialized by 4DEnsVar were more accurate than 3DEnsVar after 1-day forecast lead times. The analysis generated by 4DEnsVar was more balanced than 3DEnsVar. Case studies showed that increments from 4DEnsVar using more frequent ensemble perturbations approximated the increments from direct, nonlinear model propagation better than using less frequent ensemble perturbations. Consistently, the performance of 4DEnsVar including both the forecast accuracy and the balances of analyses was in general degraded when less frequent ensemble perturbations were used. The tangent linear normal mode constraint had positive impact for global forecast but negative impact for TC track forecasts.

Full access
Aaron Johnson
and
Xuguang Wang

Abstract

A case study characterized by Arctic cyclogenesis following a tropopause polar vortex (TPV)-induced Rossby wave initiation event is used to better understand how well existing observations constrain analyses of processes influencing Arctic cyclone predictive skill. Complementary techniques of observation system experiments (OSE) and ensemble sensitivity analysis (ESA) are used to investigate the impacts of existing observation networks on predictions for this case. The ESA reveals that the large-scale Rossby wave structure is correlated with both Arctic cyclone track and amplitude errors. The ensemble analyses of midlevel moisture in the warm conveyor belt region were correlated with forecast cyclone amplitude, but this feature was poorly sampled in existing observations. There is also a sensitivity of Arctic cyclone forecast amplitude error to low-level temperature in the air mass of the cyclogenesis region at analysis time and a sensitivity of Arctic cyclone forecast track error to low-level temperature in the region of an Arctic cold front and a coastal front at the analysis time. The OSEs for this case reveal that Arctic cyclone track error is more sensitive to denial of existing observations than amplitude error. While lower-level (below 700 hPa) observations had the greatest impact on the surface cyclone during the early stages, upper-level (above 500 hPa) observations had the dominant impact during its later evolution. Denying temperature from just three well-placed sondes substantially increased track error by degrading analyses of the TPV amplitude and its interaction with the waveguide and developing Rossby wave packet. These results are encouraging for further Arctic cyclone forecast improvements through addition of even a small number of well-placed observations.

Full access
Aaron Johnson
and
Xuguang Wang

Abstract

Object-based verification of deterministic forecasts from a convection-allowing ensemble for the 2009 NOAA Hazardous Weather Testbed Spring Experiment is conducted. The average of object attributes is compared between forecasts and observations and between forecasts from subensembles with different model dynamics. Forecast accuracy for the full ensemble and the subensembles with different model dynamics is also evaluated using two object-based measures: the object-based threat score (OTS) and the median of maximum interest (MMI).

Forecast objects aggregated from the full ensemble are generally more numerous, have a smaller average area, more circular average aspect ratio, and more eastward average centroid location than observed objects after the 1-h lead time. At the 1-h lead time, forecast objects are less numerous than observed objects. Members using the Advanced Research Weather Research and Forecasting Model (ARW) have fewer objects, more linear average aspect ratio, and smaller average area than members using the Nonhydrostatic Mesoscale Model (NMM). The OTS aggregated from the full ensemble is more consistent with the diurnal cycles of the traditional equitable threat score (ETS) than the MMI because the OTS places more weight on large objects, while the MMI weights all objects equally. The group of ARW members has higher OTS than the group of NMM members except at the 1-h lead time when the group of NMM members has more accurate maintenance and evolution of initially present precipitation systems provided by radar data assimilation. The differences between the ARW and NMM accuracy are more pronounced with the OTS than the MMI and the ETS.

Full access
Aaron Johnson
and
Xuguang Wang

Abstract

A real-time GSI-based and ensemble-based data assimilation (DA) and forecast system was implemented at the University of Oklahoma during the 2015 Plains Elevated Convection at Night (PECAN) experiment. Extensive experiments on the configuration of the cycled DA and on both the DA and forecast physics ensembles were conducted using retrospective cases to optimize the system design for nocturnal convection. The impacts of radar DA between 1200 and 1300 UTC, as well as the frequency and number of DA cycles and the DA physics configuration, extend through the following night. Ten-minute cycling of radar DA leads to more skillful forecasts than both more and less frequent cycling. The Thompson microphysics scheme for DA better analyzes the effects of morning convection on environmental moisture than WSM6, which improves the convection forecast the following night. A multi-PBL configuration during DA leads to less skillful short-term forecasts than even a relatively poorly performing single-PBL scheme. Deterministic and ensemble forecast physics configurations are also evaluated. Thompson microphysics and the Mellor–Yamada–Nakanishi–Niino (MYNN) PBL provide the most skillful nocturnal precipitation forecasts. A well thought out multiphysics configuration is shown to provide advantages over evenly distributing three of the best-performing microphysics and PBL schemes or a fixed MYNN/Thompson ensemble. This is shown using objective and subjective verification of precipitation and nonprecipitation variables, including convective initiation. Predictions of the low-level jet are sensitive to the PBL scheme, with the best scheme being variable and time dependent. These results guided the implementation and verification of a real-time ensemble DA and forecast system for PECAN.

Full access
Xu Lu
and
Xuguang Wang

Abstract

Assimilating inner-core observations collected from recent field campaign programs such as Tropical Cyclone Intensity (TCI) and Intensity Forecasting Experiment (IFEX) together with the enhanced atmospheric motion vectors (AMVs) produce realistic three-dimensional (3D) analyses using the newly developed GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation (DA) system for the Hurricane Weather Research and Forecasting (HWRF) Model for Hurricane Patricia (2015). However, more persistent surface wind maximum spindown is found in the intensity forecast initialized from the realistic analyses produced by the DA system but not from the unrealistic initial conditions produced through vortex modification. Diagnostics in this study reveal that the spindown issue is likely attributed to the deficient HWRF Model physics that are unable to maintain the realistic 3D structures from the DA analysis. The horizontal diffusion is too strong to maintain the realistically observed vertical oscillation of radial wind near the eyewall region. The vertical diffusion profile cannot produce a sufficiently strong secondary circulation connecting the realistically elevated upper-level outflow produced in the DA analysis. Further investigations with different model physics parameterizations demonstrate that spindown can be alleviated by modifying model physics parameterizations. In particular, a modified turbulent mixing parameterization scheme together with a reduced horizontal diffusion is found to significantly alleviate the spindown issue and to improve the intensity forecast. Additional experiments show that the peak-simulated intensity and rapid intensification rate can be further improved by increasing the model resolution. But the model resolution is not as important as model physics in the spindown alleviation.

Full access
Xu Lu
and
Xuguang Wang

Abstract

Diverse observations, such as the High Definition Sounding System (HDSS) dropsonde observations from the Tropical Cyclone Intensity (TCI) program, the Tail Doppler Radar (TDR), Stepped Frequency Microwave Radiometer (SFMR), and flight-level observations from the Intensity Forecasting Experiment (IFEX) program, and the atmospheric motion vectors (AMVs) from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) simultaneously depicted the three-dimensional (3D) structure of Hurricane Patricia (2015). Experiments are conducted to understand the relative impacts of each of these observation types on Patricia’s analysis and prediction using the Gridpoint Statistical Interpolation (GSI)-based ensemble-variational data assimilation system for the Hurricane Weather Research and Forecasting (HWRF) Model. In comparing the impacts of assimilating each dataset individually, results suggest that 1) the assimilation of 3D observations produces better TC structure analysis than the assimilation of two-dimensional (2D) observations; 2) the analysis from assimilating observations collected from platforms that only sample momentum fields produces a less improved forecast with either short-lived impacts or slower intensity spinup as compared to the forecast produced after assimilating observations collected from platforms that sample both momentum and thermal fields; and 3) the structure forecast tends to benefit more from the assimilation of inner-core observations than the corresponding intensity forecast, which implies better verification metrics are needed for future TC forecast evaluation.

Free access
Jie Feng
and
Xuguang Wang

Abstract

Although numerous studies have demonstrated that increasing model spatial resolution in free forecasts can potentially improve tropical cyclone (TC) intensity forecasts, studies on the impact of model resolution during data assimilation (DA) on TC prediction are lacking. In this study, using the ensemble-variational DA system for the Hurricane Weather Research and Forecasting (HWRF) Model, we investigated the individual impact of increasing the model resolution of first guess (FG) and background ensemble (BE) forecasts during DA on initial analyses and subsequent forecasts of Hurricane Patricia (2015). The impacts were compared between horizontal and vertical resolutions and also between the tropical storm (TS) and hurricane assimilation during Patricia. The results show that increasing the horizontal or vertical resolution in FG has a larger impact than increasing the resolution in BE on improving the analyzed TC intensity and structure for the hurricane stage. The result is reversed for the TS stage. These results are attributed to the effectiveness of increasing the FG resolution in intensifying the background vortex for the hurricane stage relative to the TS stage. Increasing the BE resolution contributes to improving the analyzed intensity through the better-resolved background correlation structure for both the hurricane and TS stages. Increasing horizontal resolution has an overall larger effect than increasing vertical resolution in improving the analysis at the hurricane stage and their effects are close for the analysis at the TS stage. Additionally, the more accurately analyzed primary circulation, secondary circulation, and warm-core structures via the increased resolution in DA lead to improved TC intensity forecasts.

Full access