Search Results
You are looking at 11 - 20 of 20 items for
- Author or Editor: Yolande L. Serra x
- Refine by Access: All Content x
Abstract
The 2014–15 Observations and Modeling of the Green Ocean Amazon (GOAmazon) field campaign over the central Amazon near Manaus, Brazil, occurred in coordination with the larger Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) project across Brazil. These programs provide observations of convection over the central Amazon on diurnal to annual time scales. In this study, we address the question of how Kelvin waves, observed in satellite observations of deep cloud cover over the GOAmazon region during the 2014–15 time period, modulate the growth, type, and organization of convection over the central Amazon. The answer to this question has implications for improved predictability of organized systems over the region and representation of convection and its growth on local to synoptic scales in global models. Our results demonstrate that Kelvin waves are strong modulators of synoptic-scale low- to midlevel free-tropospheric moisture, integrated moisture convergence, and surface heat fluxes. These regional modifications of the environment impact the local diurnal cycle of convection, favoring the development of mesoscale convective systems. As a result, localized rainfall is also strongly modulated, with the majority of rainfall in the GOAmazon region occurring during the passage of these systems.
Abstract
The 2014–15 Observations and Modeling of the Green Ocean Amazon (GOAmazon) field campaign over the central Amazon near Manaus, Brazil, occurred in coordination with the larger Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (CHUVA) project across Brazil. These programs provide observations of convection over the central Amazon on diurnal to annual time scales. In this study, we address the question of how Kelvin waves, observed in satellite observations of deep cloud cover over the GOAmazon region during the 2014–15 time period, modulate the growth, type, and organization of convection over the central Amazon. The answer to this question has implications for improved predictability of organized systems over the region and representation of convection and its growth on local to synoptic scales in global models. Our results demonstrate that Kelvin waves are strong modulators of synoptic-scale low- to midlevel free-tropospheric moisture, integrated moisture convergence, and surface heat fluxes. These regional modifications of the environment impact the local diurnal cycle of convection, favoring the development of mesoscale convective systems. As a result, localized rainfall is also strongly modulated, with the majority of rainfall in the GOAmazon region occurring during the passage of these systems.
Abstract
Westward-propagating atmospheric easterly waves contribute to much of the variability of the low-level wind fields within the northeast tropical Pacific. With the dominant period of these waves (3–5 days) close to the local inertial period (2.4 days at 12°N to 5.7 days at 5°N), there is the expectation that the associated winds may resonantly force mixed layer inertial motions in this region. The authors test this hypothesis using a simple slab model and roughly 4½ yr of wind data from four NOAA Tropical Atmosphere Ocean/Eastern Pacific Investigation of Climate Processes (TAO/EPIC) buoys along 95°W at 12°, 10°, 8°, and 5°N. The degree of resonance is determined by comparing model simulations using observed wind stress with simulations forced with reversed-rotation wind stress. Results strongly indicate that Pacific easterly waves (PEWs) resonantly force inertial motions in the region. This resonance shows both significant seasonality and latitudinal dependence that appears to be related to the meridional position and intensity of the PEWs. North of the zonal axis of the mean track of the PEWs, the low-level winds associated with the waves rotate predominantly clockwise with time and resonantly force mixed layer inertial motions. South of this axis, the winds rotate counterclockwise, resulting in dissonant (antiresonant) forcing. As this axis migrates annually from about 4°N during the boreal winter/spring to a maximum northerly position of about 8°–10°N in the late boreal summer/early fall, the region of strongest resonance follows, consistently remaining to its north. Model output suggests that resonant forcing results in roughly 10%–25% greater net annual flux of kinetic energy from the wind to mixed layer inertial motions than in neutral or nonresonant conditions. This finding has strong implications for mixed layer properties, air–sea coupling, and the generation of near-inertial internal waves.
Abstract
Westward-propagating atmospheric easterly waves contribute to much of the variability of the low-level wind fields within the northeast tropical Pacific. With the dominant period of these waves (3–5 days) close to the local inertial period (2.4 days at 12°N to 5.7 days at 5°N), there is the expectation that the associated winds may resonantly force mixed layer inertial motions in this region. The authors test this hypothesis using a simple slab model and roughly 4½ yr of wind data from four NOAA Tropical Atmosphere Ocean/Eastern Pacific Investigation of Climate Processes (TAO/EPIC) buoys along 95°W at 12°, 10°, 8°, and 5°N. The degree of resonance is determined by comparing model simulations using observed wind stress with simulations forced with reversed-rotation wind stress. Results strongly indicate that Pacific easterly waves (PEWs) resonantly force inertial motions in the region. This resonance shows both significant seasonality and latitudinal dependence that appears to be related to the meridional position and intensity of the PEWs. North of the zonal axis of the mean track of the PEWs, the low-level winds associated with the waves rotate predominantly clockwise with time and resonantly force mixed layer inertial motions. South of this axis, the winds rotate counterclockwise, resulting in dissonant (antiresonant) forcing. As this axis migrates annually from about 4°N during the boreal winter/spring to a maximum northerly position of about 8°–10°N in the late boreal summer/early fall, the region of strongest resonance follows, consistently remaining to its north. Model output suggests that resonant forcing results in roughly 10%–25% greater net annual flux of kinetic energy from the wind to mixed layer inertial motions than in neutral or nonresonant conditions. This finding has strong implications for mixed layer properties, air–sea coupling, and the generation of near-inertial internal waves.
Abstract
Transient inverted troughs (IVs) are a trigger for severe weather during the North American monsoon (NAM) in the southwest contiguous United States (CONUS) and northwest Mexico. These upper-tropospheric disturbances enhance the synoptic-scale and mesoscale environment for organized convection, increasing the chances for microbursts, straight-line winds, blowing dust, and flash flooding. This work considers changes in the track density climatology of IVs between 1951 and 2010. IVs are tracked as potential vorticity (PV) anomalies on the 250-hPa surface from a regional climate model that dynamically downscales the NCEP–NCAR Reanalysis 1. Late in the NAM season, a significant increase in IV track density over the 60-yr period is observed over Southern California and western Arizona, coupled with a slight decrease over northwest Mexico. Changes in precipitation are evaluated on days when an IV is observed and days without an IV, using high-resolution model-simulated precipitation estimates and CPC gridded precipitation observations. Because of changes in the spatial distribution of IVs during the 1951–2010 analysis period, which are associated with a strengthening of the monsoon ridge, it is suggested that IVs have played a lesser role in the initiation and organization of monsoon convection in the southwest CONUS during recent warm seasons.
Abstract
Transient inverted troughs (IVs) are a trigger for severe weather during the North American monsoon (NAM) in the southwest contiguous United States (CONUS) and northwest Mexico. These upper-tropospheric disturbances enhance the synoptic-scale and mesoscale environment for organized convection, increasing the chances for microbursts, straight-line winds, blowing dust, and flash flooding. This work considers changes in the track density climatology of IVs between 1951 and 2010. IVs are tracked as potential vorticity (PV) anomalies on the 250-hPa surface from a regional climate model that dynamically downscales the NCEP–NCAR Reanalysis 1. Late in the NAM season, a significant increase in IV track density over the 60-yr period is observed over Southern California and western Arizona, coupled with a slight decrease over northwest Mexico. Changes in precipitation are evaluated on days when an IV is observed and days without an IV, using high-resolution model-simulated precipitation estimates and CPC gridded precipitation observations. Because of changes in the spatial distribution of IVs during the 1951–2010 analysis period, which are associated with a strengthening of the monsoon ridge, it is suggested that IVs have played a lesser role in the initiation and organization of monsoon convection in the southwest CONUS during recent warm seasons.
Abstract
During the North American monsoon global positioning system (GPS) Transect Experiment 2013, daily convective-permitting WRF simulations are performed in northwestern Mexico and the southern Arizona border region using the operational Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) models as lateral boundary forcing and initial conditions. Compared to GPS precipitable water vapor (PWV), the WRF simulations display a consistent moist bias in the initial specification of PWV leading to convection beginning 3–6 h early. Given appreciable observed rainfall, days are classified as strongly and weakly forced based only on the presence of an inverted trough (IV); gulf surges did not noticeably impact the development of mesoscale convective systems (MCSs) and related convection in northwestern Mexico. Strongly forced days display higher modeled precipitation forecast skill than weakly forced days in the slopes of the northern Sierra Madre Occidental (SMO) away from the crest, especially toward the west where MCSs account for the greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 2013 illustrates two consecutive days when nearly identical MCSs evolved over northern Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) when an IV is approaching the core monsoon region, a simulated MCS is basically nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The greater sensitivity to the initial specification of PWV in the weakly forced day suggests that assimilation of GPS-derived PWV for these types of days may be of greatest value in improving model precipitation forecasts.
Abstract
During the North American monsoon global positioning system (GPS) Transect Experiment 2013, daily convective-permitting WRF simulations are performed in northwestern Mexico and the southern Arizona border region using the operational Global Forecast System (GFS) and North American Mesoscale Forecast System (NAM) models as lateral boundary forcing and initial conditions. Compared to GPS precipitable water vapor (PWV), the WRF simulations display a consistent moist bias in the initial specification of PWV leading to convection beginning 3–6 h early. Given appreciable observed rainfall, days are classified as strongly and weakly forced based only on the presence of an inverted trough (IV); gulf surges did not noticeably impact the development of mesoscale convective systems (MCSs) and related convection in northwestern Mexico. Strongly forced days display higher modeled precipitation forecast skill than weakly forced days in the slopes of the northern Sierra Madre Occidental (SMO) away from the crest, especially toward the west where MCSs account for the greatest proportion of all monsoon-related precipitation. A case study spanning 8–10 July 2013 illustrates two consecutive days when nearly identical MCSs evolved over northern Sonora. Although a salient MCS is simulated on the strongly forced day (9–10 July 2013) when an IV is approaching the core monsoon region, a simulated MCS is basically nonexistent on the weakly forced day (8–9 July 2013) when the IV is farther away. The greater sensitivity to the initial specification of PWV in the weakly forced day suggests that assimilation of GPS-derived PWV for these types of days may be of greatest value in improving model precipitation forecasts.
Abstract
Forecasting mesoscale convective systems (MCSs) and precipitation over complex terrain is an ongoing challenge even for convective-permitting numerical models. Here, we show the value of combining mesoscale constraints to improve short-term MCS forecasts for two events during the North American monsoon season in 2013, including the following: 1) the initial specification of moisture, via GPS-precipitable water vapor (PWV) data assimilation (DA); 2) kinematics via modification of cumulus parameterization; and 3) microphysics via modification of cloud microphysics parameterization. A total of five convective-permitting Weather Research and Forecasting (WRF) Model experiments is conducted for each event to elucidate the impact of these constraints. Results show that combining GPS-PWV DA with a modified Kain–Fritsch scheme and double-moment microphysics provides relatively the best forecast of both North American monsoon MCSs and convective precipitation in terms of timing, location, and intensity relative to available precipitation and cloud-top temperature observations. Additional examination on the associated reflectivity, vertical wind field, equivalent potential temperature, and hydrometeor distribution of MCS events show the added value of each individual constraint to forecast performance.
Significance Statement
Forecasting thunderstorm clouds and rain over mountainous regions is challenging because of limitations in having radar and rain gauges and in resolving physical drivers in forecast models. We examine the value of considering all possible constraints by incorporating moisture into these models, and correcting physics in the model treatment of cumulus and cloud microphysics parameterizations. This study demonstrates that assimilating moisture and using modified Kain–Fritsch and double-moment microphysics schemes provides the best thunderstorm cloud and rain forecasts in terms of timing, location, and intensity. Each correction improves key properties of these storms such as vertical wind, along with distribution of water in various phases. We highlight the need to improve our efforts on effectively integrating these constraints into current and future forecasts.
Abstract
Forecasting mesoscale convective systems (MCSs) and precipitation over complex terrain is an ongoing challenge even for convective-permitting numerical models. Here, we show the value of combining mesoscale constraints to improve short-term MCS forecasts for two events during the North American monsoon season in 2013, including the following: 1) the initial specification of moisture, via GPS-precipitable water vapor (PWV) data assimilation (DA); 2) kinematics via modification of cumulus parameterization; and 3) microphysics via modification of cloud microphysics parameterization. A total of five convective-permitting Weather Research and Forecasting (WRF) Model experiments is conducted for each event to elucidate the impact of these constraints. Results show that combining GPS-PWV DA with a modified Kain–Fritsch scheme and double-moment microphysics provides relatively the best forecast of both North American monsoon MCSs and convective precipitation in terms of timing, location, and intensity relative to available precipitation and cloud-top temperature observations. Additional examination on the associated reflectivity, vertical wind field, equivalent potential temperature, and hydrometeor distribution of MCS events show the added value of each individual constraint to forecast performance.
Significance Statement
Forecasting thunderstorm clouds and rain over mountainous regions is challenging because of limitations in having radar and rain gauges and in resolving physical drivers in forecast models. We examine the value of considering all possible constraints by incorporating moisture into these models, and correcting physics in the model treatment of cumulus and cloud microphysics parameterizations. This study demonstrates that assimilating moisture and using modified Kain–Fritsch and double-moment microphysics schemes provides the best thunderstorm cloud and rain forecasts in terms of timing, location, and intensity. Each correction improves key properties of these storms such as vertical wind, along with distribution of water in various phases. We highlight the need to improve our efforts on effectively integrating these constraints into current and future forecasts.
Abstract
Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.
Abstract
Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
Abstract
This is the second part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the twentieth-century simulations of intraseasonal to multidecadal variability and teleconnections with North American climate. Overall, the multimodel ensemble does reasonably well at reproducing observed variability in several aspects, but it does less well at capturing observed teleconnections, with implications for future projections examined in part three of this paper. In terms of intraseasonal variability, almost half of the models examined can reproduce observed variability in the eastern Pacific and most models capture the midsummer drought over Central America. The multimodel mean replicates the density of traveling tropical synoptic-scale disturbances but with large spread among the models. On the other hand, the coarse resolution of the models means that tropical cyclone frequencies are underpredicted in the Atlantic and eastern North Pacific. The frequency and mean amplitude of ENSO are generally well reproduced, although teleconnections with North American climate are widely varying among models and only a few models can reproduce the east and central Pacific types of ENSO and connections with U.S. winter temperatures. The models capture the spatial pattern of Pacific decadal oscillation (PDO) variability and its influence on continental temperature and West Coast precipitation but less well for the wintertime precipitation. The spatial representation of the Atlantic multidecadal oscillation (AMO) is reasonable, but the magnitude of SST anomalies and teleconnections are poorly reproduced. Multidecadal trends such as the warming hole over the central–southeastern United States and precipitation increases are not replicated by the models, suggesting that observed changes are linked to natural variability.
Abstract
This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.
Abstract
This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.
Abstract
In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.
Abstract
In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.