Search Results

You are looking at 11 - 17 of 17 items for

  • Author or Editor: Yongyun Hu x
  • Refine by Access: All Content x
Clear All Modify Search
Chen Zhou
,
Jian Lu
,
Yongyun Hu
, and
Mark D. Zelinka

Abstract

Idealized experiments performed with the Community Atmospheric Model 5.3 indicate that the width and strength of the Hadley circulation (HC) are sensitive to the location of sea surface temperature (SST) increases. The HC edge shifts poleward in response to SST increases over the subtropical regions near and on the equatorward flank of the HC edge, and shifts equatorward in response to warming over the tropical area except for the western Pacific Ocean and Indian Ocean. The HC is strengthened in response to SST increases over the intertropical convergence zone (ITCZ) and is weakened in response to SST increases over the subsidence branch of the HC in the subtropics. Tropical SST increases off the ITCZ tend to weaken the HC in the corresponding hemisphere and strengthen the HC in the opposite hemisphere. These results could be used to explain the simulated HC changes induced by recent SST variations, and it is estimated that more than half of the SST-induced HC widening in 1980–2014 is caused by changes in the spatial pattern of SST.

Free access
Yonggang Liu
,
Peng Liu
,
Dawei Li
,
Yiran Peng
, and
Yongyun Hu

Abstract

It has been demonstrated previously that atmospheric dust loading during the Precambrian could have been an order of magnitude higher than in the present day and could have cooled the global climate by more than 10°C. Here, using the fully coupled atmosphere–ocean general circulation model CESM1.2.2, we determine whether such dust loading could have facilitated the formation of Neoproterozoic snowball Earth events. Our results indicate that global dust emission decreases as atmospheric CO2 concentration (pCO2) decreases due to increasing snow coverage, but atmospheric dust loading does not change or even increases due to decreasing precipitation and strengthening June–August (JJA) Hadley circulation. The latter lifts more dust particles to high altitude and thus increases the lifetime of these particles. As the climate becomes colder and the surface albedo higher, the cooling effect of dust becomes weaker; when the global mean surface temperature is approximately −13°C, dust has negligible cooling effect. The threshold pCO2 at which Earth enters a snowball state is between 280 to 140 ppmv when there is no dust, and is similar when there is relatively light dust loading (~4.4 times the present-day value). However, the threshold pCO2 decreases dramatically to between 70 and 35 ppmv when there is heavy dust loading (~33 times the present-day value), due to the decrease in planetary albedo, which increases the energy input into the climate system. Therefore, dust makes it more difficult for Earth to enter a snowball state.

Full access
Yonggang Liu
,
W. Richard Peltier
,
Jun Yang
, and
Yongyun Hu

Abstract

The influence of continental topography on the initiation of a global glaciation (i.e., snowball Earth) is studied with both a fully coupled atmosphere–ocean general circulation model (AOGCM), CCSM3, and an atmospheric general circulation model (AGCM), CAM3 coupled to a slab ocean model. It is found that when the climate is very cold, snow cover over the central region of the Eurasian continent decreases when the atmospheric CO2 concentration (pCO2) is reduced. In the coupled model, this constitutes a negative feedback due to the reduction of land surface albedo that counteracts the positive feedback due to sea ice expansion toward the equator. When the solar insolation is 94% of the present-day value, Earth enters a snowball state when pCO2 is ~35 ppmv. On the other hand, if the continents are assumed to be flat topographically (with the global mean elevation as in the more realistic present-day case), Earth enters a snowball state more easily at pCO2 = ~60 ppmv. Therefore, the presence of topography may increase the stability of Earth against descent into a snowball state. On the contrary, a snowball Earth is found to form much more easily when complex topography is present than when it is not in CAM3. This happens despite the fact that the mid- to high-latitude climate is much warmer (by ~10°C) when topography is present than when it is not. Analyses show that neglecting sea ice dynamics in this model prevents the warming anomaly in the mid- to high latitudes from being efficiently transmitted into the tropics.

Full access
Jiping Liu
,
Zhiqiang Chen
,
Jennifer Francis
,
Mirong Song
,
Thomas Mote
, and
Yongyun Hu

Abstract

In recent decades, the Greenland ice sheet has experienced increased surface melt. However, the underlying cause of this increased surface melting and how it relates to cryospheric changes across the Arctic remain unclear. Here it is shown that an important contributing factor is the decreasing Arctic sea ice. Reduced summer sea ice favors stronger and more frequent occurrences of blocking-high pressure events over Greenland. Blocking highs enhance the transport of warm, moist air over Greenland, which increases downwelling infrared radiation, contributes to increased extreme heat events, and accounts for the majority of the observed warming trends. These findings are supported by analyses of observations and reanalysis data, as well as by independent atmospheric model simulations using a state-of-the-art atmospheric model that is forced by varying only the sea ice conditions. Reduced sea ice conditions in the model favor more extensive Greenland surface melting. The authors find a positive feedback between the variability in the extent of summer Arctic sea ice and melt area of the summer Greenland ice sheet, which affects the Greenland ice sheet mass balance. This linkage may improve the projections of changes in the global sea level and thermohaline circulation.

Full access
Mengyu Wei
,
Jun Yang
,
Yongyun Hu
,
Yonggang Liu
,
Shineng Hu
,
Xiang Li
,
Jiawenjing Lan
,
Jiaqi Guo
,
Shuai Yuan
, and
Ji Nie

Abstract

Both observations and simulations show that under global warming, there exists a warming deficit in the North Atlantic, known as the North Atlantic warming hole (NAWH). Here, we show that a similar warming hole occurs in the subpolar Pacific Ocean of paleoclimate simulations. As the solar constant is increased, the local surface becomes substantially cooler rather than warmer in the subpolar paleo-Pacific Ocean under the land–sea configurations of 70, 90, and 150 million years ago (Ma). The warming hole has a magnitude of ≈3°C and is located in the Northern Hemisphere in 70 and 90 Ma. The warming hole in 150 Ma has a magnitude of ≈1°C and is located in the Southern Hemisphere. Both atmospheric and oceanic processes contribute to trigger the warming hole. For 70- and 90-Ma experiments, atmospheric teleconnection along a great circle from tropics to extratropics intensifies surface winds over subpolar ocean and thereby increases relatively cool seawater transport from high to low latitudes. Meanwhile, global meridional overturning circulation (GMOC) becomes weaker, causing a divergence of the meridional ocean heat transport in the warming hole region. An increasing regional cloud shortwave cooling effect acts to further enhance the warming hole. For 150-Ma experiments, the warming hole is related to the meridional shift of midlatitude jet stream and the weakening of GMOC in the Southern Hemisphere. The strength and phase of the atmospheric teleconnection and the response of GMOC strongly depend on land–sea configuration, resulting in the paleo-Pacific warming hole to occur in special periods only.

Restricted access
Jiawenjing Lan
,
Jun Yang
,
Yongyun Hu
,
Xiang Li
,
Jiaqi Guo
,
Qifan Lin
,
Jing Han
,
Jian Zhang
,
Shuang Wang
, and
Ji Nie

Abstract

For modern Earth, the annual-mean equatorial winds in the upper troposphere are flowing from east to west (i.e., easterly winds). This is mainly due to the deceleration effect of the seasonal cross-equatorial Hadley cells, against the relatively weaker acceleration effect of coupled Rossby and Kelvin waves excited from tropical convection and latent heat release. In this work, we examine the evolution of equatorial winds during the past 250 million years using one global Earth system model, the Community Earth System Model version 1.2.2 (CESM1.2.2). Three climatic factors different from the modern Earth—solar constant, atmospheric CO2 concentration, and land–sea configuration—are considered in the simulations. We find that the upper-tropospheric equatorial winds change sign to westerly flows (called equatorial superrotation) in certain eras, such as 250–230 and 150–50 Ma. The strength of the superrotation is below 4 m s−1, comparable to the magnitude of the present-day easterly winds. In general, this phenomenon occurs in a warmer climate within which the tropical atmospheric circulation shifts upward in altitude, stationary and/or transient eddies are relatively stronger, and/or the Hadley cells are relatively weaker, which in turn are due to the changes of the three factors, especially CO2 concentration and land–sea configuration.

Free access
Gavin A. Schmidt
,
Reto Ruedy
,
James E. Hansen
,
Igor Aleinov
,
Nadine Bell
,
Mike Bauer
,
Susanne Bauer
,
Brian Cairns
,
Vittorio Canuto
,
Ye Cheng
,
Anthony Del Genio
,
Greg Faluvegi
,
Andrew D. Friend
,
Tim M. Hall
,
Yongyun Hu
,
Max Kelley
,
Nancy Y. Kiang
,
Dorothy Koch
,
Andy A. Lacis
,
Jean Lerner
,
Ken K. Lo
,
Ron L. Miller
,
Larissa Nazarenko
,
Valdar Oinas
,
Jan Perlwitz
,
Judith Perlwitz
,
David Rind
,
Anastasia Romanou
,
Gary L. Russell
,
Makiko Sato
,
Drew T. Shindell
,
Peter H. Stone
,
Shan Sun
,
Nick Tausnev
,
Duane Thresher
, and
Mao-Sung Yao

Abstract

A full description of the ModelE version of the Goddard Institute for Space Studies (GISS) atmospheric general circulation model (GCM) and results are presented for present-day climate simulations (ca. 1979). This version is a complete rewrite of previous models incorporating numerous improvements in basic physics, the stratospheric circulation, and forcing fields. Notable changes include the following: the model top is now above the stratopause, the number of vertical layers has increased, a new cloud microphysical scheme is used, vegetation biophysics now incorporates a sensitivity to humidity, atmospheric turbulence is calculated over the whole column, and new land snow and lake schemes are introduced. The performance of the model using three configurations with different horizontal and vertical resolutions is compared to quality-controlled in situ data, remotely sensed and reanalysis products. Overall, significant improvements over previous models are seen, particularly in upper-atmosphere temperatures and winds, cloud heights, precipitation, and sea level pressure. Data–model comparisons continue, however, to highlight persistent problems in the marine stratocumulus regions.

Full access