Search Results

You are looking at 11 - 17 of 17 items for

  • Author or Editor: Zbigniew Sorbjan x
  • Refine by Access: All Content x
Clear All Modify Search
Zbigniew Sorbjan

Abstract

This article demonstrates that vertical profiles of the heat flux in the convective boundary layer can be diagnosed through an integration over height of the time change rates of observed potential temperature profiles. Moreover, the basic characteristics of the convective boundary layer, such as the mixed-layer height zi, the depth of the interfacial (entrainment) layer, and the beat flux zero-crossing height h 0 can be uniquely evaluated based on a time evolution of potential temperature profiles in the lower atmosphere.

Full access
Zbigniew Sorbjan

Abstract

No abstract available.

Full access
Zbigniew Sorbjan

Abstract

The similarity theory of an atmospheric boundary layer over a slightly inclined terrain, discussed in an earlier paper (Sorbjan, 1983) is extended to the case of geostrophic wind varying with height. The forms of resistance laws and universal functions are obtained in the cases when the Ekman height or the actual boundary layer height are used as the boundary layer height scales.

Full access
Zbigniew Sorbjan, Yuji Kodama, and Gerd Wendler

Abstract

During the austral summer of 1982/83, measurements of wind and temperature profiles were made through the atmospheric boundary layer in Adelie Land, East Antarctica, an area known for strong katabatic winds. It was found that a shallow but strong temperature inversion was developed at night, and destroyed during the day, resulting in the development of a well-mixed layer. Wind hodographs were quite regular and spiral-like at night, but irregular during the day. The mean wind direction was about 40° to the left, looking downslope, but more downslope at night and more cross-slope during the day.

The conclusion was derived that during the polar summer the flow over Antarctica is controlled by the gravitational factor (slope-induced baroclinicity), by the thermal stability (turbulent mixing), and also by the synoptic forcing.

Full access
Wayne M. Angevine, Richard J. Doviak, and Zbigniew Sorbjan

Abstract

The vertical velocity variance in the convective atmospheric boundary layer is estimated from measurements made with a 915-MHz boundary layer wind-profiling radar. The vertical velocity variance estimates are used to infer the surface virtual heat flux through a relationship with the convective velocity scale w *. The flux estimates are compared with in situ surface flux measurements and estimates extrapolated to the surface from direct eddy correlation measurements made with a profiler and radio acoustic sounding system. The measurements were made during the Rural Oxidants in the Southern Environment II Experiment in June 1992. The experiment area is primarily pine forest, and the dominant weather conditions were hot with light winds. The profiler variance measurements are compatible with theory and earlier observations. Both remote radar methods of estimating surface virtual heat flux agree with in situ measurements to within the sampling uncertainty.

Full access
Suzanne M. Zurn-Birkhimer, Ernest M. Agee, and Zbigniew Sorbjan

Abstract

The Lake-Induced Convection Experiment provided special field data during a westerly flow cold air outbreak (CAO) on 13 January 1998, which has afforded the opportunity to examine in detail an evolving convective boundary layer. Vertical cross sections prepared from these data, extending from upstream over Wisconsin out across Lake Michigan, show the modifying effects of land–water contrast on boundary layer mixing, entrainment, heating, and moisture flux. Through this analysis, an interesting case of lake-effect airmass modification was discovered. The data show atypical differing heights in vertical mixing of heat and moisture, as well as offshore downwelling and subsidence effects in the atmosphere. Analysis shows evidence of a new observational feature, the moisture internal boundary layer (MIBL) that accords well with the often recognized thermal internal boundary layer (TIBL). The “interfacial” layer over the lake is also found to be unusually thick and moist, due in part to the upstream conditions over Wisconsin as well as the effectiveness of vertical mixing of moist plumes over the lake (also seen in the aircraft datasets presented). Results show that the atmosphere can be much more effective in the vertical mixing of moisture than heat or momentum (which mixed the same), and thus represents a significant departure from the classical bottom-up and top-down mixing formulation.

Four scales of coherent structures (CSs) with differing spatial and temporal dimensions have been identified. The CSs grow in a building block fashion with buoyancy as the dominating physical mechanism for organizing the convection (even in the presence of substantial wind shear). Characteristic turbulence statistics from aircraft measurements show evidence of these multiple scales of CSs, ranging from the smallest (microscale) in the cloud-free path region near the Wisconsin shore, to the largest (mesoscale) in the snow-filled boundary layer near the Michigan shore.

A large eddy simulation (LES) model has also been employed to study the effects of buoyancy and shear on the convective structures in lake-effect boundary layers. The model simulation results have been divided into two parts: 1) the general relationship of surface heat flux versus wind shear, which shows the interplay and dominance of these two competing forcing mechanisms for establishing convection patterns and geometry (i.e., rolls versus cells), and 2) a case study simulation of convection analogous to the CSs seen in the CFP region for the 13 January 1998 CAO event. Model simulations also show, under proper conditions of surface heating and wind shear, the simultaneous occurrence of differing scales of CSs and at different heights, including both cells and rolls and their coexisting patterns (based on the interplay between the effects of buoyancy and shear).

Full access
Volker Wulfmeyer, Shravan Kumar Muppa, Andreas Behrendt, Eva Hammann, Florian Späth, Zbigniew Sorbjan, David D. Turner, and R. Michael Hardesty

Abstract

Atmospheric variables in the convective boundary layer (CBL), which are critical for turbulence parameterizations in weather and climate models, are assessed. These include entrainment fluxes, higher-order moments of humidity, potential temperature, and vertical wind, as well as dissipation rates. Theoretical relationships between the integral scales, gradients, and higher-order moments of atmospheric variables, fluxes, and dissipation rates are developed mainly focusing on the entrainment layer (EL) at the top of the CBL. These equations form the starting point for tests of and new approaches in CBL turbulence parameterizations. For the investigation of these relationships, an observational approach using a synergy of ground-based water vapor, temperature, and wind lidar systems is proposed. These systems measure instantaneous vertical profiles with high temporal and spatial resolution throughout the CBL including the EL. The resolution of these systems permits the simultaneous measurement of gradients and fluctuations of these atmospheric variables. For accurate analyses of the gradients and the shapes of turbulence profiles, the lidar system performances are very important. It is shown that each lidar profile can be characterized very well with respect to bias and system noise and that the constant bias has negligible effect on the measurement of turbulent fluctuations. It is demonstrated how different gradient relationships can be measured and tested with the proposed lidar synergy within operational measurements or new field campaigns. Particularly, a novel approach is introduced for measuring the rate of destruction of humidity and temperature variances, which is an important component of the variance budget equations.

Full access