Search Results

You are looking at 11 - 20 of 51 items for

  • Author or Editor: Zhuo Wang x
  • Refine by Access: All Content x
Clear All Modify Search
Jiacheng Ye
and
Zhuo Wang

Abstract

Many coupled climate models suffer from a late retreat bias in North American monsoon (NAM) simulations, which is manifested by overestimated precipitation in October. The overestimated precipitation has long been attributed to the negative sea surface temperature (SST) biases in the tropical Atlantic and insufficient model resolution to resolve mesoscale features. However, we found little correlation between CMIP6 model resolutions and the simulated NAM retreat-season precipitation in October. Instead, we showed that tropical eastern North Pacific SST biases and the associated large-scale circulation biases play a dominant role in inducing the retreat-season biases, with SST biases in other ocean basins playing a secondary role. As revealed by simulations using a hierarchy of models, the positive SST biases in the tropical eastern North Pacific enhance local convection and lead to positive diabatic heating biases throughout the troposphere; the diabatic heating biases generate a Matsuno–Gill type of response that strengthens the subtropical high over the North Atlantic and weakens the subtropical high over the North Pacific, enhancing the low-level northward moisture transport from the tropics to the NAM region. The conclusion is robust across phase 6 of CMIP (CMIP6) models. The precipitation seasonality in the NAM region is used to constrain future projection. The “good” CMIP6 models project that the timing of the NAM peak season remains the same, but the peak-season precipitation is reduced and monsoon retreat is delayed, while the “poor” CMIP6 models project a delayed monsoon peak season with slightly enhanced peak-season precipitation. Both model groups project a drier dry season in the NAM region.

Restricted access
Gan Zhang
and
Zhuo Wang

Abstract

This study investigates the life cycle of anticyclonic Rossby wave breaking during the extended warm season (July–October) over the North Atlantic basin. It was found that upper-tropospheric breaking waves are coupled with lower-level perturbations and can be traced back to a wave train that extends from the North Pacific. The overturning of potential vorticity (PV) contours during wave breaking is associated with the rapid development of an upper-level ridge, which occurs along the east coast of North America and over a warm and moist airstream. The ridge development is investigated using the PV budget analysis and trajectory analysis. The PV budget analysis suggests that the horizontal advection of PV by the perturbed flow dictates the movement and the later decay of the ridge. The ridge amplification, opposed by the horizontal advection of PV, is driven by the vertical advection and the diabatic production of PV, both of which are connected to diabatic heating. The vital role of diabatic heating in the ridge amplification is corroborated by the trajectory analysis. The analysis suggests that diabatic heating reduces the static stability near the tropopause and contributes to the ridge-related negative PV anomalies. The role of diabatic heating in anticyclonic and cyclonic wave breaking in other regions is also discussed. The findings suggest that moist diabatic processes, which were often excluded from the earlier studies of wave breaking, are crucial for Rossby wave breaking during the warm season. The updated understanding of wave breaking may benefit weather forecasting and climate predictions.

Full access
Xubin Zeng
,
Zhuo Wang
, and
Aihui Wang

Abstract

Over arid regions, two community land models [Noah and Community Land Model (CLM)] still have difficulty in realistically simulating the diurnal cycle of surface skin temperature. Based on theoretical arguments and synthesis of previous observational and modeling efforts, three revisions are developed here to address this issue. The revision of the coefficients in computing roughness length for heat significantly reduces the underestimate of daytime skin temperature but has a negligible effect on nighttime skin temperature. The constraints of the minimum friction velocity and soil thermal conductivity help improve nighttime skin temperature under weak wind and dry soil conditions. These results are robust in both Noah and CLM, as well as in Noah, with 4 versus 10 soil layers based on in situ data at the Desert Rock site in Nevada with a monthly averaged diurnal amplitude of 31.7 K and the Gaize site over Tibet, China, with an amplitude of 44.6 K. While these revisions can be directly applied to CLM or other land models with subgrid tiles (including bare soil), suggestions are also made on their application to Noah and other land models that treat bare soil and vegetated area together in a model grid cell. It is suggested that the challenging issue of measuring and simulating surface sensible heat flux under stable conditions should be treated as a land–atmosphere coupled issue, involving the interplay of ground and sensible heat fluxes in balancing the net radiation over arid regions, rather than as an atmospheric turbulence issue alone. The implications of such a coupling perspective are also discussed.

Full access
Zhuo Wang
and
C-P. Chang

Abstract

Atmospheric general circulation model (AGCM) simulations are carried out to test a hypothesis (Chang et al.) for the asymmetric monsoon transition in which the maximum convection marches gradually from the Asian summer monsoon to the Asian winter monsoon during boreal fall but experiences a sudden transition in the reverse during boreal spring. In the control run, the AGCM is driven by the climatological mean sea surface temperature (SST) with a realistic annual cycle, and it reproduces the observed asymmetric monsoon transition. In the sensitivity test, the model is driven by a similarly realistic SST but whose annual cycle is symmetric. The northwestward march of the maximum convection in boreal spring becomes more gradual, resulting in an overall near-symmetric pattern for the monsoon seasonal transition. The AGCM simulations confirm the hypothesis that the atmospheric mass redistribution due to the different land–ocean thermal memories leads to a seasonally different horizontal convergence field and it facilitates the southeastward monsoon march in boreal fall, while it hinders the northwestward monsoon march in boreal spring, contributing to the asymmetric monsoon transition.

Full access
Zhuo Wang
and
Chih-Pei Chang

Abstract

A regional climate model is used to simulate the summer monsoon onset in South and Southeast Asia during the year 2000 to explore the interaction between orographic precipitation and the large-scale monsoon circulation. In the control run, the model uses the U. S. Geological Survey topography data and simulates the observed monsoon onset reasonably well. In the sensitivity tests, mountains are removed within different regions south of the Tibetan Plateau. It is found that the Indochina Peninsula monsoon onset is closely related to the local wind–terrain–precipitation interaction, while the Indian monsoon onset is more controlled by the large-scale land–sea thermal contrast.

The sensitivity tests suggest two opposite effects of high terrain on the monsoon circulation and precipitation. When the terrain height is below the lifted condensation level (LCL), the low-level westerlies and the orographic precipitation weaken with increasing terrain height due to the surface drag effect. When the terrain height is above the LCL, the positive feedback associated with the diabatic forcing of orographic precipitation is dominant, and a large mountain height leads to heavier orographic precipitation and stronger low-level westerlies. The sensitivity tests also show that the impact of orographic precipitation in the Indochina Peninsula extends up to 30° longitude upstream and affects monsoon precipitation along the western coast of India.

Full access
Chuan-Chieh Chang
and
Zhuo Wang

Abstract

A hybrid statistical–dynamical model is developed to predict multiyear variability of Atlantic tropical cyclone (TC) activity. A Poisson model takes sea surface temperature (SST) averaged over the Atlantic main development region (MDR) and the Atlantic subpolar gyre region (SPG) from the initialized CESM prediction as predictors, and skillfully predicts the basinwide TC frequency, accumulated cyclone energy (ACE), landfalling TC frequency, and hurricane and major hurricane days. Further analysis shows that the SPG SST is a more important source of predictability than the MDR SST for multiyear Atlantic TC activity. The comparison between the uninitialized and initialized CESM predictions suggests that the SPG SST is better predicted by the initialized CESM owing to the better prediction of Atlantic meridional overturning circulation, which contributes to the overall more skillful TC predictions. On the other hand, the skillful prediction of the basinwide TC frequency by the uninitialized CESM suggests the role of external forcing in the variability of Atlantic TC activity. The dependence of the hybrid prediction skills on the dynamic model ensemble size is also explored, and an ensemble size of ~20 is suggested as optimal. Further analysis shows that the SPG SST is associated with the variability of vertical wind shear and precipitable water over the tropical Atlantic even when the influence of the MDR SST is controlled. The spatial patterns of vertical wind shear and precipitable water suggest a strong modulation of ACE and hurricane frequency but a relatively weak influence on the basinwide TC frequency. The physical mechanisms between the SPG SST and Atlantic TC activity are discussed.

Free access
Gan Zhang
and
Zhuo Wang

Abstract

This study explores the connection of Rossby wave breaking (RWB) with tropical and extratropical variability during the Atlantic hurricane season. The exploration emphasizes subtropical anticyclonic RWB events over the western North Atlantic, which strongly affect tropical cyclone (TC) activity. The first part of the study investigates the link between RWB and tropical sea surface temperature (SST) variability. Tropical SST variability affects tropical precipitation and modulates the large-scale atmospheric circulation over the subtropical Atlantic, which influences the behaviors of Rossby waves and the frequency of RWB occurrence. Meanwhile, RWB regulates surface heat fluxes and helps to sustain SST anomalies in the western North Atlantic. The second part of the study explores the connections between RWB and extratropical atmosphere variability by leveraging weather regime analysis. The weather regimes over the North Atlantic are closely associated with RWB over the eastern North Atlantic and western Europe, but show weak associations with RWB over the western North Atlantic. Instead, RWB over the western basin is closely related to the weather regimes in the North Pacific–North America sector. The finding helps clarify why the correlation between the Atlantic TC activity and the summertime North Atlantic Oscillation is tenuous. The relations between the extratropical weather regimes and tropical climate modes are also discussed. The findings suggest that both tropical and extratropical variability are important for understanding variations of RWB events and their impacts on Atlantic TC activity.

Full access
Douglas E. Miller
and
Zhuo Wang

Abstract

The representation of ENSO and NAO are examined in the Climate Forecast System, version 2 (CFSv2), reforecasts with a focus on the physical processes related to teleconnections and predictability. CFSv2 predicts ENSO well, but an eastward shift of the tropical Pacific sea surface temperature (SST) anomalies is evident. Although it appears minor on the global scale, the shift in convection and the large-scale wave train affects the model prediction of regional climate. In contrast, NAO is predicted poorly. The anomaly correlation coefficient (ACC) between the model ensemble mean and the observation is 0.27 during 1982–2010, and the ensemble spread is large. The representation of three sources of NAO predictability—SST, the stratospheric polar vortex, and the Arctic sea ice concentration—is investigated. It is found that the link between tropical Pacific SST and NAO is not well represented in CFSv2, and that the tropospheric–stratospheric interactions are too weak, both contributing to the poor prediction of NAO. Additionally, the impact of ENSO and NAO on prediction skill of CFSv2 in boreal winter is analyzed in terms of the spatial ACC of geopotential height. Active ENSO events exhibit larger prediction skill than neutral years, especially during the ENSO+/NAO− and ENSO−/NAO+ winters. Spatial patterns of prediction skill are also examined, and larger skill of geopotential height and 2-m air temperature is found outlined by the nodes of the PNA pattern, consistent with the large signal-to-noise ratios associated with the ENSO teleconnection.

Full access
Douglas E. Miller
and
Zhuo Wang

Abstract

Atmospheric blocking is a prolific producer of extreme weather with significant socioeconomic impacts. Different physical mechanisms for blocking onset have been proposed and are generally focused on two sectors: the Eurasian and the North Pacific. Here, we objectively separate blocking into four regions and investigate how the blocking onset mechanisms vary from one region to another, focusing on three factors: scale interactions between three frequency bands, Rossby wave breaking (RWB), and diabatic heating. Atlantic blocks are dominated by the low-frequency flow evolution that resembles the negative phase of the North Atlantic Oscillation and are influenced by cyclonic RWB toward the western edge of the anticyclone. Europe blocks are influenced by high-frequency, traveling waves across the Atlantic Ocean and develop rapidly, mainly attributed to strong anticyclonic RWB and interaction between high- and intermediate-frequency flow components. Asian blocks are fixated within a stationary wave train that spans upstream to the western Atlantic Ocean and do not have strong potential vorticity or RWB features. The Pacific blocks are mainly influenced by an intermediate-frequency retrograding wave train, while a low-frequency component resembling the Pacific–North American pattern is evident. The Pacific blocks also contain precursor signals in the stratosphere. Backward trajectory analysis revealed that 35%–45% of parcels initialized within the Atlantic, Europe, and Pacific blocking anticyclones experience heating and ascent, while adiabatic processes dominate Asian blocking. Overall, our analysis demonstrates the importance of decomposing the flow into three frequency bands and illustrates different blocking onset mechanisms over four sectors.

Full access
Zhuo Wang
,
C-P. Chang
, and
Bin Wang

Abstract

The impacts of El Niño and La Niña on the U.S. climate during northern summer are analyzed separately. Composite analyses reveal that a continental-scale anomalous high dominates over most of North America during La Niña events and leads to hot and dry summers over the central United States. However, the impacts of El Niño over North America are weaker and more variable.

A linear barotropic model is used to explore the maintenance of the anomalous patterns. Various forcing terms derived from observations via a single-level vorticity budget analysis are used to drive the model. When the barotropic model is driven by the total forcing (Rossby wave source plus transient eddy forcing plus nonlinear interactions), the model simulations resemble the observed patterns, and a strong and extensive anticyclone is reproduced in the La Niña simulation. The model responses to the individual forcing terms suggested that the vorticity stretching term ( fD) and the transient eddy forcing contribute most to the responses over North America. The stretching term ( fD) excites a low in the El Niño simulation and a high in the La Niña simulation over North America. However, the transient eddy forcing favors an anomalous high over North America in both El Niño and La Niña simulations, such that it weakens the El Niño pattern and strengthens the La Niña pattern.

Full access