Search Results

You are looking at 21 - 22 of 22 items for

  • Author or Editor: A. Pier Siebesma x
  • Refine by Access: All Content x
Clear All Modify Search
A. Pier Siebesma
,
Christopher S. Bretherton
,
Andrew Brown
,
Andreas Chlond
,
Joan Cuxart
,
Peter G. Duynkerke
,
Hongli Jiang
,
Marat Khairoutdinov
,
David Lewellen
,
Chin-Hoh Moeng
,
Enrique Sanchez
,
Bjorn Stevens
, and
David E. Stevens

Abstract

This paper reports an intercomparison study on undisturbed trade wind cumulus convection under steady-state conditions as observed during the Barbados Oceanographic and Meteorological Experiment (BOMEX) with 10 large eddy simulation (LES) models. A main objective of this study is to obtain a quantitative assessment of the quality of the turbulent dynamics for this type of boundary layer clouds as produced by the different LES codes. A 6-h simulation shows excellent model-to-model agreement of the observed vertical thermodynamical structure, reasonable agreement of variances and turbulent fluxes, and good agreement of quantities conditionally sampled within the model clouds, such as cloud cover, liquid water, and cloud updraft strength. In the second part of this paper the LES dataset is used to evaluate simple models that are used in parameterizations of current general circulation models (GCMs). Finally, the relation of this work to subsequent LES studies of more complicated regimes is discussed, and guidance is given for the design of future observational studies of shallow cumulus boundary layers.

Full access
Bjorn Stevens
,
Andrew S. Ackerman
,
Bruce A. Albrecht
,
Andrew R. Brown
,
Andreas Chlond
,
Joan Cuxart
,
Peter G. Duynkerke
,
David C. Lewellen
,
Malcolm K. Macvean
,
Roel A. J. Neggers
,
Enrique Sánchez
,
A. Pier Siebesma
, and
David E. Stevens

Abstract

The fifth intercomparison of the Global Water and Energy Experiment Cloud System Studies Working Group 1 is used as a vehicle for better understanding the dynamics of trade wind cumuli capped by a strong inversion. The basis of the intercomparison is 10 simulations by 7 groups. These simulations are supplemented by many further sensitivity studies, including some with very refined grid meshes.

The simulations help illustrate the turbulent dynamics of trade cumuli in such a regime. In many respects the dynamics are similar to those found in many previous simulations of trade cumuli capped by weaker inversions. The principal differences are the extent to which the cloud layer is quasi-steady in the current simulations, evidence of weak countergradient momentum transport within the cloud layer, and the development and influence of an incipient stratiform cloud layer at the top of the cloud layer. Although many elements of the turbulent structure (including the wind profiles, the evolution of cloud-base height, the statistics of the subcloud layer, and the nature of mixing in the lower and middle parts of the cloud layer) are robustly predicted, the representation of the stratiform cloud amount by the different simulations is remarkably sensitive to a number of factors. Chief among these are differences between numerical algorithms. These sensitivities persist even among simulations on relatively refined grid meshes. Part of this sensitivity is attributed to a physically realistic positive radiative feedback, whereby a propensity toward higher cloud fractions in any given simulation is amplified by longwave radiative cooling.

The simulations also provide new insight into the dynamics of the transition layer at cloud base. In accord with observations, the simulations predict that this layer is most identifiable in terms of moisture variances and gradients. The simulations help illustrate the highly variable (in both height and thickness) nature of the transition layer, and we speculate that this variability helps regulate convection.

Lastly the simulations are used to help evaluate simple models of trade wind boundary layers. In accord with previous studies, mass-flux models well represent the dynamics of the cloud layer, while mixing-length models well represent the subcloud layer. The development of the stratiform cloud layer is not, however, captured by the mass-flux models. The simulations indicate that future theoretical research needs to focus on interface rules, whereby the cloud layer is coupled to the subcloud layer below and the free atmosphere above. Future observational studies of this regime would be of most benefit if they could provide robust cloud statistics as a function of mean environmental conditions.

Full access