Search Results

You are looking at 21 - 23 of 23 items for

  • Author or Editor: Adrian J. Matthews x
  • Refine by Access: All Content x
Clear All Modify Search
Jenson V. George, P. N. Vinayachandran, V. Vijith, V. Thushara, Anoop A. Nayak, Shrikant M. Pargaonkar, P. Amol, K. Vijaykumar, and Adrian J. Matthews


During the Bay of Bengal (BoB) Boundary Layer Experiment (BoBBLE) in the southern BoB, time series of microstructure measurements were obtained at 8°N, 89°E from 4 to 14 July 2016. These observations captured events of barrier layer (BL) erosion and reformation. Initially, a three-layer structure was observed: a fresh surface mixed layer (ML) of thickness 10–20 m; a BL below of 30–40-m thickness with similar temperature but higher salinity; and a high salinity core layer, associated with the Summer Monsoon Current. Each of these three layers was in relative motion to the others, leading to regions of high shear at the interfaces. However, the destabilizing influence of the shear regions was not enough to overcome the haline stratification, and the three-layer structure was preserved. A salinity budget using in situ observations suggested that during the BL erosion, differential advection brought high salinity surface waters (34.5 psu) with weak stratification to the time series location and replaced the three-layer structure with a deep ML (~60 m). The resulting weakened stratification at the time series location then allowed atmospheric wind forcing to penetrate deeper. The turbulent kinetic energy dissipation rate and eddy diffusivity showed elevated values above 10−7 W kg−1 and 10−4 m2 s−1, respectively, in the upper 60 m. Later, the surface salinity decreased again (33.8 psu) through differential horizontal advection, stratification became stronger and elevated mixing rates were confined to the upper 20 m, and the BL reformed. A 1D model experiment suggested that in the study region, differential advection of temperature–salinity characteristics is essential for the maintenance of BL and to the extent to which mixing penetrates the water column.

Full access
Beata Latos, Thierry Lefort, Maria K. Flatau, Piotr J. Flatau, Donaldi S. Permana, Dariusz B. Baranowski, Jaka A. I. Paski, Erwin Makmur, Eko Sulystyo, Philippe Peyrillé, Zhe Feng, Adrian J. Matthews, and Jerome M. Schmidt


On the basis of detailed analysis of a case study and long-term climatology, it is shown that equatorial waves and their interactions serve as precursors for extreme rain and flood events in the central Maritime Continent region of southwest Sulawesi, Indonesia. Meteorological conditions on 22 January 2019 leading to heavy rainfall and devastating flooding in this area are studied. It is shown that a convectively coupled Kelvin wave (CCKW) and a convectively coupled equatorial Rossby wave (CCERW) embedded within the larger-scale envelope of the Madden–Julian oscillation (MJO) enhanced convective phase, contributed to the onset of a mesoscale convective system that developed over the Java Sea. Low-level convergence from the CCKW forced mesoscale convective organization and orographic ascent of moist air over the slopes of southwest Sulawesi. Climatological analysis shows that 92% of December–February floods and 76% of extreme rain events in this region were immediately preceded by positive low-level westerly wind anomalies. It is estimated that both CCKWs and CCERWs propagating over Sulawesi double the chance of floods and extreme rain event development, while the probability of such hazardous events occurring during their combined activity is 8 times greater than on a random day. While the MJO is a key component shaping tropical atmospheric variability, it is shown that its usefulness as a single factor for extreme weather-driven hazard prediction is limited.

Restricted access
P. N. Vinayachandran, Adrian J. Matthews, K. Vijay Kumar, Alejandra Sanchez-Franks, V. Thushara, Jenson George, V. Vijith, Benjamin G. M. Webber, Bastien Y. Queste, Rajdeep Roy, Amit Sarkar, Dariusz B. Baranowski, G. S. Bhat, Nicholas P. Klingaman, Simon C. Peatman, C. Parida, Karen J. Heywood, Robert Hall, Brian King, Elizabeth C. Kent, Anoop A. Nayak, C. P. Neema, P. Amol, A. Lotliker, A. Kankonkar, D. G. Gracias, S. Vernekar, A. C. D’Souza, G. Valluvan, Shrikant M. Pargaonkar, K. Dinesh, Jack Giddings, and Manoj Joshi


The Bay of Bengal (BoB) plays a fundamental role in controlling the weather systems that make up the South Asian summer monsoon system. In particular, the southern BoB has cooler sea surface temperatures (SST) that influence ocean–atmosphere interaction and impact the monsoon. Compared to the southeastern BoB, the southwestern BoB is cooler, more saline, receives much less rain, and is influenced by the summer monsoon current (SMC). To examine the impact of these features on the monsoon, the BoB Boundary Layer Experiment (BoBBLE) was jointly undertaken by India and the United Kingdom during June–July 2016. Physical and biogeochemical observations were made using a conductivity–temperature–depth (CTD) profiler, five ocean gliders, an Oceanscience Underway CTD (uCTD), a vertical microstructure profiler (VMP), two acoustic Doppler current profilers (ADCPs), Argo floats, drifting buoys, meteorological sensors, and upper-air radiosonde balloons. The observations were made along a zonal section at 8°N between 85.3° and 89°E with a 10-day time series at 8°N, 89°E. This paper presents the new observed features of the southern BoB from the BoBBLE field program, supported by satellite data. Key results from the BoBBLE field campaign show the Sri Lanka dome and the SMC in different stages of their seasonal evolution and two freshening events during which salinity decreased in the upper layer, leading to the formation of thick barrier layers. BoBBLE observations were taken during a suppressed phase of the intraseasonal oscillation; they captured in detail the warming of the ocean mixed layer and the preconditioning of the atmosphere to convection.

Open access