Search Results
You are looking at 21 - 24 of 24 items for
- Author or Editor: Bradfield Lyon x
- Refine by Access: All Content x
Abstract
The inherent persistence characteristics of various drought indicators are quantified to extract predictive information that can improve drought early warning. Predictive skill is evaluated as a function of the seasonal cycle for regions within North America. The study serves to establish a set of baseline probabilities for drought across multiple indicators amenable to direct comparison with drought indicator forecast probabilities obtained when incorporating dynamical climate model forecasts. The emphasis is on the standardized precipitation index (SPI), but the method can easily be applied to any other meteorological drought indicator, and some additional examples are provided. Monte Carlo resampling of observational data generates two sets of synthetic time series of monthly precipitation that include, and exclude, the annual cycle while removing serial correlation. For the case of no seasonality, the autocorrelation (AC) of the SPI (and seasonal precipitation percentiles, moving monthly averages of precipitation) decays linearly with increasing lag. It is shown that seasonality in the variance of accumulated precipitation serves to enhance or diminish the persistence characteristics (AC) of the SPI and related drought indicators, and the seasonal cycle can thereby provide an appreciable source of drought predictability at regional scales. The AC is used to obtain a parametric probability density function of the future state of the SPI that is based solely on its inherent persistence characteristics. In addition, a method is presented for determining the optimal persistence of the SPI for the case of no serial correlation in precipitation (again, the baseline case). The optimized, baseline probabilities are being incorporated into Internet-based tools for the display of current and forecast drought conditions in near–real time.
Abstract
The inherent persistence characteristics of various drought indicators are quantified to extract predictive information that can improve drought early warning. Predictive skill is evaluated as a function of the seasonal cycle for regions within North America. The study serves to establish a set of baseline probabilities for drought across multiple indicators amenable to direct comparison with drought indicator forecast probabilities obtained when incorporating dynamical climate model forecasts. The emphasis is on the standardized precipitation index (SPI), but the method can easily be applied to any other meteorological drought indicator, and some additional examples are provided. Monte Carlo resampling of observational data generates two sets of synthetic time series of monthly precipitation that include, and exclude, the annual cycle while removing serial correlation. For the case of no seasonality, the autocorrelation (AC) of the SPI (and seasonal precipitation percentiles, moving monthly averages of precipitation) decays linearly with increasing lag. It is shown that seasonality in the variance of accumulated precipitation serves to enhance or diminish the persistence characteristics (AC) of the SPI and related drought indicators, and the seasonal cycle can thereby provide an appreciable source of drought predictability at regional scales. The AC is used to obtain a parametric probability density function of the future state of the SPI that is based solely on its inherent persistence characteristics. In addition, a method is presented for determining the optimal persistence of the SPI for the case of no serial correlation in precipitation (again, the baseline case). The optimized, baseline probabilities are being incorporated into Internet-based tools for the display of current and forecast drought conditions in near–real time.
The global climate in 2000 was again influenced by the long-running Pacific cold episode (La Niña) that began in mid-1998. Consistent with past cold episodes, enhanced convection occurred across the climatologically convective regions of Indonesia and the western equatorial Pacific, while convection was suppressed in the central Pacific. The La Niña was also associated with a well-defined African easterly jet located north of its climatological mean position and low vertical wind shear in the tropical Atlantic and Caribbean, both of which contributed to an active North Atlantic hurricane season. Precipitation patterns influenced by typical La Niña conditions included 1) above-average rainfall in southeastern Africa, 2) unusually heavy rainfall in northern and central regions of Australia, 3) enhanced precipitation in the tropical Indian Ocean and western tropical Pacific, 4) little rainfall in the central tropical Pacific, 5) below-normal precipitation over equatorial east Africa, and 6) drier-than-normal conditions along the Gulf coast of the United States.
Although no hurricanes made landfall in the United States in 2000, another active North Atlantic hurricane season featured 14 named storms, 8 of which became hurricanes, with 3 growing to major hurricane strength. All of the named storms over the North Atlantic formed during the August–October period with the first hurricane of the season, Hurricane Alberto, notable as the third-longest-lived tropical system since reliable records began in 1945. The primary human loss during the 2000 season occurred in Central America, where Hurricane Gordon killed 19 in Guatemala, and Hurricane Keith killed 19 in Belize and caused $200 million dollars of damage.
Other regional events included 1) record warm January–October temperatures followed by record cold November–December temperatures in the United States, 2) extreme drought and widespread wildfires in the southern and western Unites States, 3) continued long-term drought in the Hawaiian Islands throughout the year with record 24-h rainfall totals in November, 4) deadly storms and flooding in western Europe in October, 5) a summer heat wave and drought in southern Europe, 6) monsoon flooding in parts of Southeast Asia and India, 7) extreme winter conditions in Mongolia, 8) extreme long-term drought in the Middle East and Southwest Asia, and 9) severe flooding in southern Africa.
Global mean temperatures remained much above average in 2000. The average land and ocean temperature was 0.39°C above the 1880–1999 long-term mean, continuing a trend to warmer-than-average temperatures that made the 1990s the warmest decade on record. While the persistence of La Niña conditions in 2000 was associated with somewhat cooler temperatures in the Tropics, temperatures in the extratropics remained near record levels. Land surface temperatures in the high latitudes of the Northern Hemisphere were notably warmer than normal, with annually averaged anomalies greater than 2°C in parts of Alaska, Canada, Asia, and northern Europe.
The global climate in 2000 was again influenced by the long-running Pacific cold episode (La Niña) that began in mid-1998. Consistent with past cold episodes, enhanced convection occurred across the climatologically convective regions of Indonesia and the western equatorial Pacific, while convection was suppressed in the central Pacific. The La Niña was also associated with a well-defined African easterly jet located north of its climatological mean position and low vertical wind shear in the tropical Atlantic and Caribbean, both of which contributed to an active North Atlantic hurricane season. Precipitation patterns influenced by typical La Niña conditions included 1) above-average rainfall in southeastern Africa, 2) unusually heavy rainfall in northern and central regions of Australia, 3) enhanced precipitation in the tropical Indian Ocean and western tropical Pacific, 4) little rainfall in the central tropical Pacific, 5) below-normal precipitation over equatorial east Africa, and 6) drier-than-normal conditions along the Gulf coast of the United States.
Although no hurricanes made landfall in the United States in 2000, another active North Atlantic hurricane season featured 14 named storms, 8 of which became hurricanes, with 3 growing to major hurricane strength. All of the named storms over the North Atlantic formed during the August–October period with the first hurricane of the season, Hurricane Alberto, notable as the third-longest-lived tropical system since reliable records began in 1945. The primary human loss during the 2000 season occurred in Central America, where Hurricane Gordon killed 19 in Guatemala, and Hurricane Keith killed 19 in Belize and caused $200 million dollars of damage.
Other regional events included 1) record warm January–October temperatures followed by record cold November–December temperatures in the United States, 2) extreme drought and widespread wildfires in the southern and western Unites States, 3) continued long-term drought in the Hawaiian Islands throughout the year with record 24-h rainfall totals in November, 4) deadly storms and flooding in western Europe in October, 5) a summer heat wave and drought in southern Europe, 6) monsoon flooding in parts of Southeast Asia and India, 7) extreme winter conditions in Mongolia, 8) extreme long-term drought in the Middle East and Southwest Asia, and 9) severe flooding in southern Africa.
Global mean temperatures remained much above average in 2000. The average land and ocean temperature was 0.39°C above the 1880–1999 long-term mean, continuing a trend to warmer-than-average temperatures that made the 1990s the warmest decade on record. While the persistence of La Niña conditions in 2000 was associated with somewhat cooler temperatures in the Tropics, temperatures in the extratropics remained near record levels. Land surface temperatures in the high latitudes of the Northern Hemisphere were notably warmer than normal, with annually averaged anomalies greater than 2°C in parts of Alaska, Canada, Asia, and northern Europe.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Abstract
Drought affects virtually every region of the world, and potential shifts in its character in a changing climate are a major concern. This article presents a synthesis of current understanding of meteorological drought, with a focus on the large-scale controls on precipitation afforded by sea surface temperature (SST) anomalies, land surface feedbacks, and radiative forcings. The synthesis is primarily based on regionally focused articles submitted to the Global Drought Information System (GDIS) collection together with new results from a suite of atmospheric general circulation model experiments intended to integrate those studies into a coherent view of drought worldwide. On interannual time scales, the preeminence of ENSO as a driver of meteorological drought throughout much of the Americas, eastern Asia, Australia, and the Maritime Continent is now well established, whereas in other regions (e.g., Europe, Africa, and India), the response to ENSO is more ephemeral or nonexistent. Northern Eurasia, central Europe, and central and eastern Canada stand out as regions with few SST-forced impacts on precipitation on interannual time scales. Decadal changes in SST appear to be a major factor in the occurrence of long-term drought, as highlighted by apparent impacts on precipitation of the late 1990s “climate shifts” in the Pacific and Atlantic SST. Key remaining research challenges include (i) better quantification of unforced and forced atmospheric variability as well as land–atmosphere feedbacks, (ii) better understanding of the physical basis for the leading modes of climate variability and their predictability, and (iii) quantification of the relative contributions of internal decadal SST variability and forced climate change to long-term drought.
Abstract
The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Niño–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern.
One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the United States tends to occur when the two oceans have anomalies of opposite signs. Further highlights of the response over the United States to the Pacific forcing include precipitation signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. The response to the positive SST trend forcing pattern is an overall surface warming over the world’s land areas, with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all of the models.
It is hoped that these early results, as well as those reported in the other contributions to this special issue on drought, will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
Abstract
The U.S. Climate Variability and Predictability (CLIVAR) working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land–atmosphere feedbacks on regional drought. The runs were carried out with five different atmospheric general circulation models (AGCMs) and one coupled atmosphere–ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Niño–Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic multidecadal oscillation (AMO), and a global trend pattern.
One of the key findings is that all of the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the United States tends to occur when the two oceans have anomalies of opposite signs. Further highlights of the response over the United States to the Pacific forcing include precipitation signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. The response to the positive SST trend forcing pattern is an overall surface warming over the world’s land areas, with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all of the models.
It is hoped that these early results, as well as those reported in the other contributions to this special issue on drought, will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.