Search Results

You are looking at 21 - 30 of 35 items for

  • Author or Editor: Carl Schreck x
  • Refine by Access: All Content x
Clear All Modify Search
Philip J. Klotzbach, Carl J. Schreck III, Jennifer M. Collins, Michael M. Bell, Eric S. Blake, and David Roache

Abstract

The 2017 North Atlantic hurricane season was extremely active, with 17 named storms (1981–2010 median is 12.0), 10 hurricanes (median is 6.5), 6 major hurricanes (median is 2.0), and 245% of median accumulated cyclone energy (ACE) occurring. September 2017 generated more Atlantic named storm days, hurricane days, major hurricane days, and ACE than any other calendar month on record. The season was destructive, with Harvey and Irma devastating portions of the continental United States, while Irma and Maria brought catastrophic damage to Puerto Rico, Cuba, and many other Caribbean islands. Seasonal forecasts increased from calling for a slightly below-normal season in April to an above-normal season in August as large-scale environmental conditions became more favorable for an active hurricane season. During that time, the tropical Atlantic warmed anomalously while a potential El Niño decayed in the Pacific. Anomalously high SSTs prevailed across the tropical Atlantic, and vertical wind shear was anomalously weak, especially in the central tropical Atlantic, from late August to late September when several major hurricanes formed. Late-season hurricane activity was likely reduced by a convectively suppressed phase of the Madden–Julian oscillation. The large-scale steering flow was different from the average over the past decade with a strong subtropical high guiding hurricanes farther west across the Atlantic. The anomalously high tropical Atlantic SSTs and low vertical wind shear were comparable to other very active seasons since 1982.

Full access
Michael J. Ventrice, Matthew C. Wheeler, Harry H. Hendon, Carl J. Schreck III, Chris D. Thorncroft, and George N. Kiladis

Abstract

A new Madden–Julian oscillation (MJO) index is developed from a combined empirical orthogonal function (EOF) analysis of meridionally averaged 200-hPa velocity potential (VP200), 200-hPa zonal wind (U200), and 850-hPa zonal wind (U850). Like the Wheeler–Hendon Real-time Multivariate MJO (RMM) index, which was developed in the same way except using outgoing longwave radiation (OLR) data instead of VP200, daily data are projected onto the leading pair of EOFs to produce the two-component index. This new index is called the velocity potential MJO (VPM) indices and its properties are quantitatively compared to RMM. Compared to the RMM index, the VPM index detects larger-amplitude MJO-associated signals during boreal summer. This includes a slightly stronger and more coherent modulation of Atlantic tropical cyclones. This result is attributed to the fact that velocity potential preferentially emphasizes the planetary-scale aspects of the divergent circulation, thereby spreading the convectively driven component of the MJO’s signal across the entire globe. VP200 thus deemphasizes the convective signal of the MJO over the Indian Ocean warm pool, where the OLR variability associated with the MJO is concentrated, and enhances the signal over the relatively drier longitudes of the equatorial Pacific and Atlantic. This work provides a useful framework for systematic analysis of the strengths and weaknesses of different MJO indices.

Full access
Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott
Full access
Peter A. StotT, Nikos Christidis, Stephanie C. Herring, Andrew Hoell, James P. Kossin, and Carl J. Schreck III
Open access
Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

Editors note: For easy download the posted pdf of the Explaining Extreme Events of 2015 is a very low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.

Full access
Stephanie C. Herring, Andrew Hoell, Martin P. Hoerling, James P. Kossin, Carl J. Schreck III, and Peter A. Stott
Full access
Philip J. Klotzbach, Michael M. Bell, Steven G. Bowen, Ethan J. Gibney, Kenneth R. Knapp, and Carl J. Schreck III

Abstract

Atlantic hurricane seasons have a long history of causing significant financial impacts, with Harvey, Irma, Maria, Florence, and Michael combining to incur more than 345 billion USD in direct economic damage during 2017–2018. While Michael’s damage was primarily wind and storm surge-driven, Florence’s and Harvey’s damage was predominantly rainfall and inland flood-driven. Several revised scales have been proposed to replace the Saffir–Simpson Hurricane Wind Scale (SSHWS), which currently only categorizes the hurricane wind threat, while not explicitly handling the totality of storm impacts including storm surge and rainfall. However, most of these newly-proposed scales are not easily calculated in real-time, nor can they be reliably calculated historically. In particular, they depend on storm wind radii, which remain very uncertain. Herein, we analyze the relationship between normalized historical damage caused by continental United States (CONUS) landfalling hurricanes from 1900–2018 with both maximum sustained wind speed (V max) and minimum sea level pressure (MSLP). We show that MSLP is a more skillful predictor of normalized damage than V max, with a significantly higher rank correlation between normalized damage and MSLP (r rank = 0.77) than between normalized damage and V max (r rank = 0.66) for all CONUS landfalling hurricanes. MSLP has served as a much better predictor of hurricane damage in recent years than V max, with large hurricanes such as Ike (2008) and Sandy (2012) causing much more damage than anticipated from their SSHWS ranking. MSLP is also a more accurately-measured quantity than is V max, making it an ideal quantity for evaluating a hurricane’s potential damage.

Free access
Matthew A. Janiga, Carl J. Schreck III, James A. Ridout, Maria Flatau, Neil P. Barton, E. Joseph Metzger, and Carolyn A. Reynolds

Abstract

In this study, the contribution of low-frequency (>100 days), Madden–Julian oscillation (MJO), and convectively coupled equatorial wave (CCEW) variability to the skill in predicting convection and winds in the tropics at weeks 1–3 is examined. We use subseasonal forecasts from the Navy Earth System Model (NESM); NCEP Climate Forecast System, version 2 (CFSv2); and ECMWF initialized in boreal summer 1999–2015. A technique for performing wavenumber–frequency filtering on subseasonal forecasts is introduced and applied to these datasets. This approach is better able to isolate regional variations in MJO forecast skill than traditional global MJO indices. Biases in the mean state and in the activity of the MJO and CCEWs are smallest in the ECMWF model. The NESM overestimates cloud cover as well as MJO, equatorial Rossby, and mixed Rossby–gravity/tropical depression activity over the west Pacific. The CFSv2 underestimates convectively coupled Kelvin wave activity. The predictive skill of the models at weeks 1–3 is examined by decomposing the forecasts into wavenumber–frequency signals to determine the modes of variability that contribute to forecast skill. All three models have a similar ability to simulate low-frequency variability but large differences in MJO skill are observed. The skill of the NESM and ECMWF model in simulating MJO-related OLR signals at week 2 is greatest over two regions of high MJO activity, the equatorial Indian Ocean and Maritime Continent, and the east Pacific. The MJO in the CFSv2 is too slow and too weak, which results in lower MJO skill in these regions.

Open access
Philip J. Klotzbach, Carl J. Schreck III, Gilbert P. Compo, Steven G. Bowen, Ethan J. Gibney, Eric C. J. Oliver, and Michael M. Bell

Abstract

The 1933 Atlantic hurricane season was extremely active, with 20 named storms and 11 hurricanes including 6 major (category 3+; 1-min maximum sustained winds ≥96 kt) hurricanes occurring. The 1933 hurricane season also generated the most accumulated cyclone energy (an integrated metric that accounts for frequency, intensity, and duration) of any Atlantic hurricane season on record. A total of 8 hurricanes tracked through the Caribbean in 1933—the most on record. In addition, two category 3 hurricanes made landfall in the United States just 23 h apart: the Treasure Coast hurricane in southeast Florida followed by the Cuba–Brownsville hurricane in south Texas. This manuscript examines large-scale atmospheric and oceanic conditions that likely led to such an active hurricane season. Extremely weak vertical wind shear was prevalent over both the Caribbean and the tropical Atlantic throughout the peak months of the hurricane season, likely in part due to a weak-to-moderate La Niña event. These favorable dynamic conditions, combined with above-normal tropical Atlantic sea surface temperatures, created a very conducive environment for hurricane formation and intensification. The Madden–Julian oscillation was relatively active during the summer and fall of 1933, providing subseasonal conditions that were quite favorable for tropical cyclogenesis during mid- to late August and late September to early October. The current early June and August statistical models used by Colorado State University would have predicted a very active 1933 hurricane season. A better understanding of these extremely active historical Atlantic hurricane seasons may aid in anticipation of future hyperactive seasons.

Full access
Kerry Emanuel, Philippe Caroff, Sandy Delgado, Charles “Chip” Guard, Mark Guishard, Christopher Hennon, John Knaff, Kenneth R. Knapp, James Kossin, Carl Schreck, Christopher Velden, and Jonathan Vigh
Open access