Search Results

You are looking at 21 - 30 of 46 items for

  • Author or Editor: Cecilia Bitz x
  • Refine by Access: All Content x
Clear All Modify Search
Marie C. McGraw
,
Eduardo Blanchard-Wrigglesworth
,
Robin P. Clancy
, and
Cecilia M. Bitz

Abstract

The predictability of sea ice during extreme sea ice loss events on subseasonal (daily to weekly) time scales is explored in dynamical forecast models. These extreme sea ice loss events (defined as the 5th percentile of the 5-day change in sea ice extent) exhibit substantial regional and seasonal variability; in the central Arctic Ocean basin, most subseasonal rapid ice loss occurs in the summer, but in the marginal seas rapid sea ice loss occurs year-round. Dynamical forecast models are largely able to capture the seasonality of these extreme sea ice loss events. In most regions in the summertime, sea ice forecast skill is lower on extreme sea ice loss days than on nonextreme days, despite evidence that links these extreme events to large-scale atmospheric patterns; in the wintertime, the difference between extreme and nonextreme days is less pronounced. In a damped anomaly forecast benchmark estimate, the forecast error remains high following extreme sea ice loss events and does not return to typical error levels for many weeks; this signal is less robust in the dynamical forecast models but still present. Overall, these results suggest that sea ice forecast skill is generally lower during and after extreme sea ice loss events and also that, while dynamical forecast models are capable of simulating extreme sea ice loss events with similar characteristics to what we observe, forecast skill from dynamical models is limited by biases in mean state and variability and errors in the initialization.

Significance Statement

We studied weather model forecasts of changes in Arctic sea ice extent on day-to-day time scales in different regions and seasons. We were especially interested in extreme sea ice loss days, or days in which sea ice melts very quickly or is reduced due to diverging forces such as winds, ocean currents, and waves. We find that forecast models generally capture the observed timing of extreme sea ice loss days. We also find that forecasts of sea ice extent are worse on extreme sea ice loss days compared to typical days, and that forecast errors remain elevated following extreme sea ice loss events.

Full access
Lily C. Hahn
,
Kyle C. Armour
,
David S. Battisti
,
Ian Eisenman
, and
Cecilia M. Bitz

Abstract

Arctic surface warming under greenhouse gas forcing peaks in winter and reaches its minimum during summer in both observations and model projections. Many mechanisms have been proposed to explain this seasonal asymmetry, but disentangling these processes remains a challenge in the interpretation of general circulation model (GCM) experiments. To isolate these mechanisms, we use an idealized single-column sea ice model (SCM) that captures the seasonal pattern of Arctic warming. SCM experiments demonstrate that as sea ice melts and exposes open ocean, the accompanying increase in effective surface heat capacity alone can produce the observed pattern of peak warming in early winter (shifting to late winter under increased forcing) by slowing the seasonal heating rate, thus delaying the phase and reducing the amplitude of the seasonal cycle of surface temperature. To investigate warming seasonality in more complex models, we perform GCM experiments that individually isolate sea ice albedo and thermodynamic effects under CO2 forcing. These also show a key role for the effective heat capacity of sea ice in promoting seasonal asymmetry through suppressing summer warming, in addition to precluding summer climatological inversions and a positive summer lapse-rate feedback. Peak winter warming in GCM experiments is further supported by a positive winter lapse-rate feedback, due to cold initial surface temperatures and strong surface-trapped warming that are enabled by the albedo effects of sea ice alone. While many factors contribute to the seasonal pattern of Arctic warming, these results highlight changes in effective surface heat capacity as a central mechanism supporting this seasonality.

Significance Statement

Under increasing concentrations of atmospheric greenhouse gases, the strongest Arctic warming has occurred during early winter, but the reasons for this seasonal pattern of warming are not well understood. We use experiments in both simple and complex models with certain sea ice processes turned on and off to disentangle potential drivers of seasonality in Arctic warming. When sea ice melts and open ocean is exposed, surface temperatures are slower to reach the warm-season maximum and slower to cool back down below freezing in early winter. We find that this process alone can produce the observed pattern of maximum Arctic warming in early winter, highlighting a fundamental mechanism for the seasonality of Arctic warming.

Full access
Hansi K. A. Singh
,
Cecilia M. Bitz
,
Aaron Donohoe
,
Jesse Nusbaumer
, and
David C. Noone

Abstract

The aerial hydrological cycle response to CO2 doubling from a Lagrangian, rather than Eulerian, perspective is evaluated using information from numerical water tracers implemented in a global climate model. While increased surface evaporation (both local and remote) increases precipitation globally, changes in transport are necessary to create a spatial pattern where precipitation decreases in the subtropics and increases substantially at the equator. Overall, changes in the convergence of remotely evaporated moisture are more important to the overall precipitation change than changes in the amount of locally evaporated moisture that precipitates in situ. It is found that CO2 doubling increases the fraction of locally evaporated moisture that is exported, enhances moisture exchange between ocean basins, and shifts moisture convergence within a given basin toward greater distances between moisture source (evaporation) and sink (precipitation) regions. These changes can be understood in terms of the increased residence time of water in the atmosphere with CO2 doubling, which corresponds to an increase in the advective length scale of moisture transport. As a result, the distance between where moisture evaporates and where it precipitates increases. Analyses of several heuristic models further support this finding.

Full access
Hansi K. A. Singh
,
Cecilia M. Bitz
,
Aaron Donohoe
, and
Philip J. Rasch

Abstract

Numerical water tracers implemented in a global climate model are used to study how polar hydroclimate responds to CO2-induced warming from a source–receptor perspective. Although remote moisture sources contribute substantially more to polar precipitation year-round in the mean state, an increase in locally sourced moisture is crucial to the winter season polar precipitation response to greenhouse gas forcing. In general, the polar hydroclimate response to CO2-induced warming is strongly seasonal: over both the Arctic and Antarctic, locally sourced moisture constitutes a larger fraction of the precipitation in winter, while remote sources become even more dominant in summer. Increased local evaporation in fall and winter is coincident with sea ice retreat, which greatly augments local moisture sources in these seasons. In summer, however, larger contributions from more remote moisture source regions are consistent with an increase in moisture residence times and a longer moisture transport length scale, which produces a robust hydrologic cycle response to CO2-induced warming globally. The critical role of locally sourced moisture in the hydrologic cycle response of both the Arctic and Antarctic is distinct from controlling factors elsewhere on the globe; for this reason, great care should be taken in interpreting polar isotopic proxy records from climate states unlike the present.

Full access
Robin Clancy
,
Cecilia M. Bitz
,
Edward Blanchard-Wrigglesworth
,
Marie C. McGraw
, and
Steven M. Cavallo

Abstract

Arctic cyclones are an extremely common, year-round phenomenon, with substantial influence on sea ice. However, few studies address the heterogeneity in the spatial patterns in the atmosphere and sea ice during Arctic cyclones. We investigate these spatial patterns by compositing on cyclones from 1985-2016 using a novel, cyclone-centered approach that reveals conditions as functions of bearing and distance from cyclone centers. An axisymmetric, cold core model for the structure of Arctic cyclones has previously been proposed, however, we show that the structure of Arctic cyclones is comparable to those in the mid-latitudes, with cyclonic surface winds, a warm, moist sector to the east of cyclones and a cold, dry sector to the west. There is no consensus on the impact of Arctic cyclones on sea ice, as some studies have shown that Arctic cyclones lead to sea ice growth and others to sea ice loss. Instead, we find that sea ice decreases to the east of Arctic cyclones and increases to the west, with the greatest changes occurring in the marginal ice zone. Using a sea ice model forced with prescribed atmospheric reanalysis, we reveal the relative importance of the dynamic and thermodynamic forcing of Arctic cyclones on sea ice. The dynamic and thermodynamic responses of sea ice concentration to cyclones are comparable in magnitude, however dynamic processes dominate the response of sea ice thickness and are the primary driver of the east-west difference in the sea ice response to cyclones.

Open access
Jennifer E. Kay
,
Casey Wall
,
Vineel Yettella
,
Brian Medeiros
,
Cecile Hannay
,
Peter Caldwell
, and
Cecilia Bitz

Abstract

A large, long-standing, and pervasive climate model bias is excessive absorbed shortwave radiation (ASR) over the midlatitude oceans, especially the Southern Ocean. This study investigates both the underlying mechanisms for and climate impacts of this bias within the Community Earth System Model, version 1, with the Community Atmosphere Model, version 5 [CESM1(CAM5)]. Excessive Southern Ocean ASR in CESM1(CAM5) results in part because low-level clouds contain insufficient amounts of supercooled liquid. In a present-day atmosphere-only run, an observationally motivated modification to the shallow convection detrainment increases supercooled cloud liquid, brightens low-level clouds, and substantially reduces the Southern Ocean ASR bias. Tuning to maintain global energy balance enables reduction of a compensating tropical ASR bias. In the resulting preindustrial fully coupled run with a brighter Southern Ocean and dimmer tropics, the Southern Ocean cools and the tropics warm. As a result of the enhanced meridional temperature gradient, poleward heat transport increases in both hemispheres (especially the Southern Hemisphere), and the Southern Hemisphere atmospheric jet strengthens. Because northward cross-equatorial heat transport reductions occur primarily in the ocean (80%), not the atmosphere (20%), a proposed atmospheric teleconnection linking Southern Ocean ASR bias reduction and cooling with northward shifts in tropical precipitation has little impact. In summary, observationally motivated supercooled liquid water increases in shallow convective clouds enable large reductions in long-standing climate model shortwave radiation biases. Of relevance to both model bias reduction and climate dynamics, quantifying the influence of Southern Ocean cooling on tropical precipitation requires a model with dynamic ocean heat transport.

Full access
Hansi K. A. Singh
,
Cecilia M. Bitz
, and
Dargan M. W. Frierson

Abstract

A global climate model is used to study the effect of flattening the orography of the Antarctic Ice Sheet on climate. A general result is that the Antarctic continent and the atmosphere aloft warm, while there is modest cooling globally. The large local warming over Antarctica leads to increased outgoing longwave radiation, which drives anomalous southward energy transport toward the continent and cooling elsewhere. Atmosphere and ocean both anomalously transport energy southward in the Southern Hemisphere. Near Antarctica, poleward energy and momentum transport by baroclinic eddies strengthens. Anomalous southward cross-equatorial energy transport is associated with a northward shift in the intertropical convergence zone. In the ocean, anomalous southward energy transport arises from a slowdown of the upper cell of the oceanic meridional overturning circulation and a weakening of the horizontal ocean gyres, causing sea ice in the Northern Hemisphere to expand and the Arctic to cool. Comparison with a slab-ocean simulation confirms the importance of ocean dynamics in determining the climate system response to Antarctic orography. This paper concludes by briefly presenting a discussion of the relevance of these results to climates of the past and to future climate scenarios.

Full access
Andrew G. Pauling
,
Cecilia M. Bitz
,
Inga J. Smith
, and
Patricia J. Langhorne

ABSTRACT

The possibility that recent Antarctic sea ice expansion resulted from an increase in freshwater reaching the Southern Ocean is investigated here. The freshwater flux from ice sheet and ice shelf mass imbalance is largely missing in models that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, on average, precipitation minus evaporation (PE) reaching the Southern Ocean has increased in CMIP5 models to a present value that is about greater than preindustrial times and 5–22 times larger than estimates of the mass imbalance of Antarctic ice sheets and shelves (119–544 ). Two sets of experiments were conducted from 1980 to 2013 in CESM1(CAM5), one of the CMIP5 models, artificially distributing freshwater either at the ocean surface to mimic iceberg melt or at the ice shelf fronts at depth. An anomalous reduction in vertical advection of heat into the surface mixed layer resulted in sea surface cooling at high southern latitudes and an associated increase in sea ice area. Enhancing the freshwater input by an amount within the range of estimates of the Antarctic mass imbalance did not have any significant effect on either sea ice area magnitude or trend. Freshwater enhancement of raised the total sea ice area by 1 × 106 km2, yet this and even an enhancement of was insufficient to offset the sea ice decline due to anthropogenic forcing for any period of 20 years or longer. Further, the sea ice response was found to be insensitive to the depth of freshwater injection.

Full access
Emily R. Newsom
,
Cecilia M. Bitz
,
Frank O. Bryan
,
Ryan Abernathey
, and
Peter R. Gent

Abstract

The dynamics of the lower cell of the meridional overturning circulation (MOC) in the Southern Ocean are compared in two versions of a global climate model: one with high-resolution (0.1°) ocean and sea ice and the other a lower-resolution (1.0°) counterpart. In the high-resolution version, the lower cell circulation is stronger and extends farther northward into the abyssal ocean. Using the water-mass-transformation framework, it is shown that the differences in the lower cell circulation between resolutions are explained by greater rates of surface water-mass transformation within the higher-resolution Antarctic sea ice pack and by differences in diapycnal-mixing-induced transformation in the abyssal ocean.

While both surface and interior transformation processes work in tandem to sustain the lower cell in the control climate, the circulation is far more sensitive to changes in surface transformation in response to atmospheric warming from raising carbon dioxide levels. The substantial reduction in overturning is primarily attributed to reduced surface heat loss. At high resolution, the circulation slows more dramatically, with an anomaly that reaches deeper into the abyssal ocean and alters the distribution of Southern Ocean warming. The resolution dependence of associated heat uptake is particularly pronounced in the abyssal ocean (below 4000 m), where the higher-resolution version of the model warms 4.5 times more than its lower-resolution counterpart.

Full access
Marika M. Holland
,
Cecilia M. Bitz
,
Elizabeth C. Hunke
,
William H. Lipscomb
, and
Julie L. Schramm

Abstract

The sea ice simulation of the Community Climate System Model version 3 (CCSM3) T42-gx1 and T85-gx1 control simulations is presented and the influence of the parameterized sea ice thickness distribution (ITD) on polar climate conditions is examined. This includes an analysis of the change in mean climate conditions and simulated sea ice feedbacks when an ITD is included. It is found that including a representation of the subgrid-scale ITD results in larger ice growth rates and thicker sea ice. These larger growth rates represent a higher heat loss from the ocean ice column to the atmosphere, resulting in warmer surface conditions. Ocean circulation, most notably in the Southern Hemisphere, is also modified by the ITD because of the influence of enhanced high-latitude ice formation on the ocean buoyancy flux and resulting deep water formation. Changes in atmospheric circulation also result, again most notably in the Southern Hemisphere.

There are indications that the ITD also modifies simulated sea ice–related feedbacks. In regions of similar ice thickness, the surface albedo changes at 2XCO2 conditions are larger when an ITD is included, suggesting an enhanced surface albedo feedback. The presence of an ITD also modifies the ice thickness–ice strength relationship and the ice thickness–ice growth rate relationship, both of which represent negative feedbacks on ice thickness. The net influence of the ITD on polar climate sensitivity and variability results from the interaction of these and other complex feedback processes.

Full access