Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Clark Evans x
  • Refine by Access: All Content x
Clear All Modify Search
Anna N. Kaminski
,
Jason M. Cordeira
,
Nicholas D. Metz
,
Katie Bachli
,
Megan Duncan
,
Michaela Ericksen
,
Ivy Glade
,
Cassandra Roberts
, and
Clark Evans

Abstract

Atmospheric rivers (ARs) are a frequently studied phenomenon along the West Coast of the United States, where they are typically associated with the heaviest local flooding events and almost one-half of the annual precipitation totals. By contrast, ARs in the northeastern United States have received considerably less attention. The purpose of this study is to utilize a unique visual inspection methodology to create a 30-yr (1988–2017) climatology of ARs in the northeastern United States. Consistent with its formal definition, ARs are defined as corridors with integrated vapor transport (IVT) values greater than 250 kg m−1 s−1 over an area at least 2000 km long but less than 1000 km wide in association with an extratropical cyclone. Using MERRA2 reanalysis data, this AR definition is used to determine the frequency, duration, and spatial distribution of ARs across the northeastern United States. Approximately 100 ARs occur in the northeastern United States per year, with these ARs being quasi-uniformly distributed throughout the year. On average, northeastern U.S. ARs have a peak IVT magnitude between 750 and 999 kg m−1 s−1, last less than 48 h, and arrive in the region from the west to southwest. Average AR durations are longer in summer and shorter in winter. Further, ARs are typically associated with lower IVT in winter and higher IVT in summer. Spatially, ARs more frequently occur over the Atlantic Ocean coastline and adjacent Gulf Stream waters; however, the frequency with which large IVT values are associated with ARs is highest over interior New England.

Restricted access
Clark Evans
,
Heather M. Archambault
,
Jason M. Cordeira
,
Cody Fritz
,
Thomas J. Galarneau Jr.
,
Saska Gjorgjievska
,
Kyle S. Griffin
,
Alexandria Johnson
,
William A. Komaromi
,
Sarah Monette
,
Paytsar Muradyan
,
Brian Murphy
,
Michael Riemer
,
John Sears
,
Daniel Stern
,
Brian Tang
, and
Segayle Thompson

The Pre-Depression Investigation of Cloud-systems in the Tropics (PREDICT) field experiment successfully gathered data from four developing and four decaying/nondeveloping tropical disturbances over the tropical North Atlantic basin between 15 August and 30 September 2010. The invaluable roles played by early career scientists (ECSs) throughout the campaign helped make possible the successful execution of the field program's mission to investigate tropical cyclone formation. ECSs provided critical meteorological information— often obtained from novel ECS-created products—during daily weather briefings that were used by the principal investigators in making mission planning decisions. Once a Gulfstream V (G-V) flight mission was underway, ECSs provided nowcasting support, relaying information that helped the mission scientists to steer clear of potential areas of turbulence aloft. Data from these missions, including dropsonde and GPS water vapor profiler data, were continually obtained, processed, and quality-controlled by ECSs. The dropsonde data provided National Hurricane Center forecasters and PREDICT mission scientists with real-time information regarding the characteristics of tropical disturbances. These data and others will serve as the basis for multiple ECS-led research topics over the years to come and are expected to provide new insights into the tropical cyclone formation process. PREDICT also provided invaluable educational and professional development experiences for ECSs, including the opportunity to critically evaluate observational evidence for tropical cyclone development theories and networking opportunities with their peers and established scientists in the field.

Full access
Morris L. Weisman
,
Robert J. Trapp
,
Glen S. Romine
,
Chris Davis
,
Ryan Torn
,
Michael Baldwin
,
Lance Bosart
,
John Brown
,
Michael Coniglio
,
David Dowell
,
A. Clark Evans
,
Thomas J. Galarneau Jr.
,
Julie Haggerty
,
Terry Hock
,
Kevin Manning
,
Paul Roebber
,
Pavel Romashkin
,
Russ Schumacher
,
Craig S. Schwartz
,
Ryan Sobash
,
David Stensrud
, and
Stanley B. Trier

Abstract

The Mesoscale Predictability Experiment (MPEX) was conducted from 15 May to 15 June 2013 in the central United States. MPEX was motivated by the basic question of whether experimental, subsynoptic observations can extend convective-scale predictability and otherwise enhance skill in short-term regional numerical weather prediction.

Observational tools for MPEX included the National Science Foundation (NSF)–National Center for Atmospheric Research (NCAR) Gulfstream V aircraft (GV), which featured the Airborne Vertical Atmospheric Profiling System mini-dropsonde system and a microwave temperature-profiling (MTP) system as well as several ground-based mobile upsonde systems. Basic operations involved two missions per day: an early morning mission with the GV, well upstream of anticipated convective storms, and an afternoon and early evening mission with the mobile sounding units to sample the initiation and upscale feedbacks of the convection.

A total of 18 intensive observing periods (IOPs) were completed during the field phase, representing a wide spectrum of synoptic regimes and convective events, including several major severe weather and/or tornado outbreak days. The novel observational strategy employed during MPEX is documented herein, as is the unique role of the ensemble modeling efforts—which included an ensemble sensitivity analysis—to both guide the observational strategies and help address the potential impacts of such enhanced observations on short-term convective forecasting. Preliminary results of retrospective data assimilation experiments are discussed, as are data analyses showing upscale convective feedbacks.

Full access
David M. Schultz
,
Altuğ Aksoy
,
Jeffrey Anderson
,
Tommaso Benacchio
,
Kristen L. Corbosiero
,
Matthew D. Eastin
,
Clark Evans
,
Jidong Gao
,
Almut Gassman
,
Joshua P. Hacker
,
Daniel Hodyss
,
Matthew R. Kumjian
,
Ron McTaggart-Cowan
,
Glen Romine
,
Paul Roundy
,
Angela Rowe
,
Elizabeth Satterfield
,
Russ S. Schumacher
,
Stan Trier
,
Christopher Weiss
,
Henry P. Huntington
, and
Gary M. Lackmann
Open access
David M. Schultz
,
Jeffrey Anderson
,
Tommaso Benacchio
,
Kristen L. Corbosiero
,
Matthew D. Eastin
,
Clark Evans
,
Jidong Gao
,
Joshua P. Hacker
,
Daniel Hodyss
,
Daryl Kleist
,
Matthew R. Kumjian
,
Ron McTaggart-Cowan
,
Zhiyong Meng
,
Justin R. Minder
,
Derek Posselt
,
Paul Roundy
,
Angela Rowe
,
Michael Scheuerer
,
Russ S. Schumacher
,
Stan Trier
, and
Christopher Weiss
Free access
Clark Evans
,
Kimberly M. Wood
,
Sim D. Aberson
,
Heather M. Archambault
,
Shawn M. Milrad
,
Lance F. Bosart
,
Kristen L. Corbosiero
,
Christopher A. Davis
,
João R. Dias Pinto
,
James Doyle
,
Chris Fogarty
,
Thomas J. Galarneau Jr.
,
Christian M. Grams
,
Kyle S. Griffin
,
John Gyakum
,
Robert E. Hart
,
Naoko Kitabatake
,
Hilke S. Lentink
,
Ron McTaggart-Cowan
,
William Perrie
,
Julian F. D. Quinting
,
Carolyn A. Reynolds
,
Michael Riemer
,
Elizabeth A. Ritchie
,
Yujuan Sun
, and
Fuqing Zhang

Abstract

Extratropical transition (ET) is the process by which a tropical cyclone, upon encountering a baroclinic environment and reduced sea surface temperature at higher latitudes, transforms into an extratropical cyclone. This process is influenced by, and influences, phenomena from the tropics to the midlatitudes and from the meso- to the planetary scales to extents that vary between individual events. Motivated in part by recent high-impact and/or extensively observed events such as North Atlantic Hurricane Sandy in 2012 and western North Pacific Typhoon Sinlaku in 2008, this review details advances in understanding and predicting ET since the publication of an earlier review in 2003. Methods for diagnosing ET in reanalysis, observational, and model-forecast datasets are discussed. New climatologies for the eastern North Pacific and southwest Indian Oceans are presented alongside updates to western North Pacific and North Atlantic Ocean climatologies. Advances in understanding and, in some cases, modeling the direct impacts of ET-related wind, waves, and precipitation are noted. Improved understanding of structural evolution throughout the transformation stage of ET fostered in large part by novel aircraft observations collected in several recent ET events is highlighted. Predictive skill for operational and numerical model ET-related forecasts is discussed along with environmental factors influencing posttransition cyclone structure and evolution. Operational ET forecast and analysis practices and challenges are detailed. In particular, some challenges of effective hazard communication for the evolving threats posed by a tropical cyclone during and after transition are introduced. This review concludes with recommendations for future work to further improve understanding, forecasts, and hazard communication.

Open access