Search Results

You are looking at 21 - 30 of 40 items for

  • Author or Editor: Craig S. Schwartz x
  • Refine by Access: All Content x
Clear All Modify Search
Craig S. Schwartz
,
Glen S. Romine
,
Ryan A. Sobash
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

This expository paper documents an experimental, real-time, 10-member, 3-km, convection-allowing ensemble prediction system (EPS) developed at the National Center for Atmospheric Research (NCAR) in spring 2015. The EPS is particularly unique in that continuously cycling, limited-area, mesoscale ensemble Kalman filter analyses provide diverse initial conditions. In addition to describing the EPS configurations, initial forecast assessments are presented that suggest the EPS can provide valuable severe weather guidance and skillful predictions of precipitation. The EPS output is available to operational forecasters, many of whom have incorporated the products into their toolboxes. Given such rapid embrace of an experimental system by the operational community, acceleration of convection-allowing EPS development is encouraged.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Ryan A. Sobash
,
Kathryn R. Fossell
, and
Morris L. Weisman

Abstract

Beginning 7 April 2015, scientists at the U.S. National Center for Atmospheric Research (NCAR) began producing daily, real-time, experimental, 10-member ensemble forecasts with 3-km horizontal grid spacing across the entire conterminous United States. Graphical forecast products were posted in real time to the Internet, where they attracted a large following from both forecasters and researchers across government, academia, and the private sector. Although these forecasts were initially planned to terminate after one year, the project was extended through 30 December 2017 because of the enthusiastic community response. This article details the motivation for the NCAR ensemble project and describes the project’s impacts throughout the meteorological community. Classroom and operational use of the NCAR ensemble are discussed in addition to the diverse application of NCAR ensemble output for research purposes. Furthermore, some performance statistics are provided, and the NCAR ensemble website and data visualization approach are described. We hope the NCAR ensemble’s success will motivate additional experimental forecast demonstrations that transcend current operational capabilities, as forward-looking forecast systems are needed to accelerate operational development and provide students, young scientists, and forecasters with glimpses of what future modeling systems may look like. Additionally, the NCAR ensemble dataset is publicly available and can be used for meaningful research endeavors concerning many meteorological topics.

Full access
Craig S. Schwartz
,
May Wong
,
Glen S. Romine
,
Ryan A. Sobash
, and
Kathryn R. Fossell

Abstract

Five sets of 48-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were systematically evaluated over the conterminous United States with a focus on precipitation across 31 cases. The various CAEs solely differed by their initial condition perturbations (ICPs) and central initial states. CAEs initially centered about deterministic Global Forecast System (GFS) analyses were unequivocally better than those initially centered about ensemble mean analyses produced by a limited-area single-physics, single-dynamics 15-km continuously cycling ensemble Kalman filter (EnKF), strongly suggesting relative superiority of the GFS analyses. Additionally, CAEs with flow-dependent ICPs derived from either the EnKF or multimodel 3-h forecasts from the Short-Range Ensemble Forecast (SREF) system had higher fractions skill scores than CAEs with randomly generated mesoscale ICPs. Conversely, due to insufficient spread, CAEs with EnKF ICPs had worse reliability, discrimination, and dispersion than those with random and SREF ICPs. However, members in the CAE with SREF ICPs undesirably clustered by dynamic core represented in the ICPs, and CAEs with random ICPs had poor spinup characteristics. Collectively, these results indicate that continuously cycled EnKF mean analyses were suboptimal for CAE initialization purposes and suggest that further work to improve limited-area continuously cycling EnKFs over large regional domains is warranted. Additionally, the deleterious aspects of using both multimodel and random ICPs suggest efforts toward improving spread in CAEs with single-physics, single-dynamics, flow-dependent ICPs should continue.

Free access
Ryan A. Sobash
,
Craig S. Schwartz
,
Glen S. Romine
, and
Morris L. Weisman

Abstract

Explicit attributes of convective storms within convection-allowing model (CAM) forecasts are routinely used as surrogates for convective weather hazards. The ability of 3- and 1-km horizontal grid spacing CAM forecasts to anticipate tornadoes using surrogates was examined for 497 severe weather events. Five diagnostics were used as tornado surrogates, including 0–1 km above ground level (AGL) updraft helicity (UH01), 2–5 km AGL UH (UH25), 0–3 km AGL UH (UH03), and 500 m and 1 km AGL relative vorticity. Next-day surrogate severe probability forecasts (SSPFs) for tornadoes were produced by thresholding the diagnostics and smoothing the resulting binary field. SSPFs were verified against SPC tornado reports and NWS tornado warnings. The 1-km SSPFs were more skillful than 3-km SSPFs across all diagnostics with statistically significant differences in skill that were largest on the mesoscale. UH01 outperformed the other four diagnostics, in part because UH01 best represented regional variations in observed tornado report totals. Filtering forecasts based on the significant tornado parameter benefited the 3-km SSPFs much more than the 1-km SSPFs, with filtered 3-km SSPFs having similar skill to the filtered 1-km SSPFs. SSPFs verified with a combination of tornado warnings and reports were more skillful than when verified against reports alone, indicating that CAMs can better predict intense low-level rotation events than tornadoes. When verifying all severe hazards, UH25 SSPFs were more skillful than UH01 SSPFs; UH01 and UH25 appear to be the most useful pair for anticipating tornadoes and the combined severe threat on a given forecast day.

Full access
Craig S. Schwartz
,
Zhiquan Liu
,
Xiang-Yu Huang
,
Ying-Hwa Kuo
, and
Chin-Tzu Fong

Abstract

The Weather Research and Forecasting Model (WRF) “hybrid” variational-ensemble data assimilation (DA) algorithm was used to initialize WRF model forecasts of three tropical cyclones (TCs). The hybrid-initialized forecasts were compared to forecasts initialized by WRF's three-dimensional variational (3DVAR) DA system. An ensemble adjustment Kalman filter (EAKF) updated a 32-member WRF-based ensemble system that provided flow-dependent background error covariances for the hybrid. The 3DVAR, hybrid, and EAKF configurations cycled continuously for ~3.5 weeks and produced new analyses every 6 h that initialized 72-h WRF forecasts with 45-km horizontal grid spacing. Additionally, the impact of employing a TC relocation technique and using multiple outer loops (OLs) in the 3DVAR and hybrid minimizations were explored.

Model output was compared to conventional, dropwindsonde, and TC “best track” observations. On average, the hybrid produced superior forecasts compared to 3DVAR when only one OL was used during minimization. However, when three OLs were employed, 3DVAR forecasts were dramatically improved but the mean hybrid performance changed little. Additionally, incorporation of TC relocation within the cycling systems further improved the mean 3DVAR-initialized forecasts but the average hybrid-initialized forecasts were nearly unchanged.

Full access
Kathryn M. Newman
,
Craig S. Schwartz
,
Zhiquan Liu
,
Hui Shao
, and
Xiang-Yu Huang

Abstract

This study examines the impact of assimilating Microwave Humidity Sounder (MHS) radiances in a limited-area ensemble Kalman filter (EnKF) data assimilation system. Two experiments spanning 11 August–13 September 2008 were run over a domain featuring the Atlantic basin using a 6-h full cycling analysis and forecast system. Deterministic 72-h forecasts were initialized at 0000 and 1200 UTC for a comparison of forecast impact. The two experiments were configured identically with the exception of the inclusion of the MHS radiances (AMHS) in the second to isolate the impacts of the MHS radiance data. The results were verified against several sources, and statistical significance tests indicate the most notable differences are in the midlevel moisture fields. Both configurations were characterized by high moisture biases when compared to the European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim, also known as ERA-I) specific humidity fields, as well as precipitable water vapor from an observationally based product. However, the AMHS experiment has midlevel moisture fields closer to the ERA-I and observation datasets. When reducing the verification domain to focus on the subtropical and easterly wave regions of the North Atlantic Ocean, larger improvements in midlevel moisture at nearly all lead times is seen in the AMHS simulation. Finally, when considering tropical cyclone forecasts, the AMHS configuration shows improvement in intensity forecasts at several lead times as well as improvements at early to intermediate lead times for minimum sea level pressure forecasts.

Full access
Morris L. Weisman
,
Kevin W. Manning
,
Ryan A. Sobash
, and
Craig S. Schwartz

Abstract

Herein, 14 severe quasi-linear convective systems (QLCS) covering a wide range of geographical locations and environmental conditions are simulated for both 1- and 3-km horizontal grid resolutions, to further clarify their comparative capabilities in representing convective system features associated with severe weather production. Emphasis is placed on validating the simulated reflectivity structures, cold pool strength, mesoscale vortex characteristics, and surface wind strength. As to the overall reflectivity characteristics, the basic leading-line trailing stratiform structure was often better defined at 1 versus 3 km, but both resolutions were capable of producing bow echo and line echo wave pattern type features. Cold pool characteristics for both the 1- and 3-km simulations were also well replicated for the differing environments, with the 1-km cold pools slightly colder and often a bit larger. Both resolutions captured the larger mesoscale vortices, such as line-end or bookend vortices, but smaller, leading-line mesoscale updraft vortices, that often promote QLCS tornadogenesis, were largely absent in the 3-km simulations. Finally, while maximum surface winds were only marginally well predicted for both resolutions, the simulations were able to reasonably differentiate the relative contributions of the cold pool versus mesoscale vortices. The present results suggest that while many QLCS characteristics can be reasonably represented at a grid scale of 3 km, some of the more detailed structures, such as overall reflectivity characteristics and the smaller leading-line mesoscale vortices would likely benefit from the finer 1-km grid spacing.

Significance Statement

High-resolution model forecasts using 3-km grid spacing have proven to offer significant forecast guidance enhancements for severe convective weather. However, it is unclear whether additional enhancements can be obtained by decreasing grid spacings further to 1 km. Herein, we compare forecasts of severe quasi-linear convective systems (QLCS) simulated using 1- versus 3-km grids to document the potential value added of such increases in grid resolutions. It is shown that some significant improvements can be obtained in the representation of many QLCS features, especially as regards reflectivity structure and in the development of small, leading-line mesoscale vortices that can contribute to both severe surface wind and tornado production.

Open access
Glen S. Romine
,
Craig S. Schwartz
,
Judith Berner
,
Kathryn R. Fossell
,
Chris Snyder
,
Jeff L. Anderson
, and
Morris L. Weisman

Abstract

Ensembles provide an opportunity to greatly improve short-term prediction of local weather hazards, yet generating reliable predictions remain a significant challenge. In particular, convection-permitting ensemble forecast systems (CPEFSs) have persistent problems with underdispersion. Representing initial and or lateral boundary condition uncertainty along with forecast model error provides a foundation for building a more dependable CPEFS, but the best practice for ensemble system design is not well established.

Several configurations of CPEFSs are examined where ensemble forecasts are nested within a larger domain, drawing initial conditions from a downscaled, continuously cycled, ensemble data assimilation system that provides state-dependent initial condition uncertainty. The control ensemble forecast, with initial condition uncertainty only, is skillful but underdispersive. To improve the reliability of the ensemble forecasts, the control ensemble is supplemented with 1) perturbed lateral boundary conditions; or, model error representation using either 2) stochastic kinetic energy backscatter or 3) stochastically perturbed parameterization tendencies. Forecasts are evaluated against stage IV accumulated precipitation analyses and radiosonde observations. Perturbed ensemble forecasts are also compared to the control forecast to assess the relative impact from adding forecast perturbations. For precipitation forecasts, all perturbation approaches improve ensemble reliability relative to the control CPEFS. Deterministic ensemble member forecast skill, verified against radiosonde observations, decreases when forecast perturbations are added, while ensemble mean forecasts remain similarly skillful to the control.

Full access
Craig S. Schwartz
,
Glen S. Romine
,
Morris L. Weisman
,
Ryan A. Sobash
,
Kathryn R. Fossell
,
Kevin W. Manning
, and
Stanley B. Trier

Abstract

In May and June 2013, the National Center for Atmospheric Research produced real-time 48-h convection-allowing ensemble forecasts at 3-km horizontal grid spacing using the Weather Research and Forecasting (WRF) Model in support of the Mesoscale Predictability Experiment field program. The ensemble forecasts were initialized twice daily at 0000 and 1200 UTC from analysis members of a continuously cycling, limited-area, mesoscale (15 km) ensemble Kalman filter (EnKF) data assimilation system and evaluated with a focus on precipitation and severe weather guidance. Deterministic WRF Model forecasts initialized from GFS analyses were also examined. Subjectively, the ensemble forecasts often produced areas of intense convection over regions where severe weather was observed. Objective statistics confirmed these subjective impressions and indicated that the ensemble was skillful at predicting precipitation and severe weather events. Forecasts initialized at 1200 UTC were more skillful regarding precipitation and severe weather placement than forecasts initialized 12 h earlier at 0000 UTC, and the ensemble forecasts were typically more skillful than GFS-initialized forecasts. At times, 0000 UTC GFS-initialized forecasts had temporal distributions of domain-average rainfall closer to observations than EnKF-initialized forecasts. However, particularly when GFS analyses initialized WRF Model forecasts, 1200 UTC forecasts produced more rainfall during the first diurnal maximum than 0000 UTC forecasts. This behavior was mostly attributed to WRF Model initialization of clouds and moist physical processes. The success of these real-time ensemble forecasts demonstrates the feasibility of using limited-area continuously cycling EnKFs as a method to initialize convection-allowing ensemble forecasts, and future real-time high-resolution ensemble development leveraging EnKFs seems justified.

Full access
Ryan A. Sobash
,
Glen S. Romine
,
Craig S. Schwartz
,
David J. Gagne II
, and
Morris L. Weisman

Abstract

Three diagnostic fields were examined to assess their ability to act as surrogates for tornadoes in a convection-allowing ensemble system run during the spring of 2015. The diagnostics included midlevel (2–5 km AGL) updraft helicity (UH25), low-level (0–3 km AGL) updraft helicity (UH03), and low-level (1 km AGL) vertical relative vorticity (RVORT1). RVORT1 was used as a direct measure of low-level rotation strength. Each storm’s RVORT1 magnitude and near-storm environment properties were extracted from each hour’s forecasts using an object-based approach. The near-storm environments of storm objects with large magnitudes of RVORT1 were very similar to the environments identified as conducive for the development of tornadic supercells in previous proximity sounding-based studies (e.g., low lifted condensation levels and strong low-level shear). This motivated the use of RVORT1 as a direct surrogate for tornadoes, without the need to filter forecasts with environmental information. The relationship between UH25 and UH03 was also explored among the simulated storms; UH03 only exceeded UH25 in storms occurring within low-CAPE/high-shear environments, while UH03 rarely exceeded UH25 in traditional supercell environments. Next-day ensemble surrogate severe probability forecasts (E-SSPFs) for tornadoes were generated using these diagnostics for 92 forecasts, with thresholds based on the number of observed tornado reports. E-SSPFs for tornadoes using RVORT1 and UH03 were more skillful than E-SSPFs using UH25. The UH25 E-SSPFs possessed little skill, regardless of threshold or smoothing length scale. All E-SSPFs suffered from poor sharpness at skillful scales, with few forecast probabilities greater than 40%.

Full access