Search Results
You are looking at 21 - 26 of 26 items for
- Author or Editor: D. P. Rogers x
- Refine by Access: All Content x
The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigators to expect.
The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigators to expect.
Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.
Shallow, maritime cumuli are ubiquitous over much of the tropical oceans, and characterizing their properties is important to understanding weather and climate. The Rain in Cumulus over the Ocean (RICO) field campaign, which took place during November 2004–January 2005 in the trades over the western Atlantic, emphasized measurements of processes related to the formation of rain in shallow cumuli, and how rain subsequently modifies the structure and ensemble statistics of trade wind clouds. Eight weeks of nearly continuous S-band polarimetric radar sampling, 57 flights from three heavily instrumented research aircraft, and a suite of ground- and ship-based instrumentation provided data on trade wind clouds with unprecedented resolution. Observational strategies employed during RICO capitalized on the advances in remote sensing and other instrumentation to provide insight into processes that span a range of scales and that lie at the heart of questions relating to the cause and effects of rain from shallow maritime cumuli.
Abstract
Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.
Abstract
Tropical cyclone (TC) outflow and its relationship to TC intensity change and structure were investigated in the Office of Naval Research Tropical Cyclone Intensity (TCI) field program during 2015 using dropsondes deployed from the innovative new High-Definition Sounding System (HDSS) and remotely sensed observations from the Hurricane Imaging Radiometer (HIRAD), both on board the NASA WB-57 that flew in the lower stratosphere. Three noteworthy hurricanes were intensively observed with unprecedented horizontal resolution: Joaquin in the Atlantic and Marty and Patricia in the eastern North Pacific. Nearly 800 dropsondes were deployed from the WB-57 flight level of ∼60,000 ft (∼18 km), recording atmospheric conditions from the lower stratosphere to the surface, while HIRAD measured the surface winds in a 50-km-wide swath with a horizontal resolution of 2 km. Dropsonde transects with 4–10-km spacing through the inner cores of Hurricanes Patricia, Joaquin, and Marty depict the large horizontal and vertical gradients in winds and thermodynamic properties. An innovative technique utilizing GPS positions of the HDSS reveals the vortex tilt in detail not possible before. In four TCI flights over Joaquin, systematic measurements of a major hurricane’s outflow layer were made at high spatial resolution for the first time. Dropsondes deployed at 4-km intervals as the WB-57 flew over the center of Hurricane Patricia reveal in unprecedented detail the inner-core structure and upper-tropospheric outflow associated with this historic hurricane. Analyses and numerical modeling studies are in progress to understand and predict the complex factors that influenced Joaquin’s and Patricia’s unusual intensity changes.
Abstract
The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.
Abstract
The Coupled Air–Sea Processes and Electromagnetic Ducting Research (CASPER) project aims to better quantify atmospheric effects on the propagation of radar and communication signals in the marine environment. Such effects are associated with vertical gradients of temperature and water vapor in the marine atmospheric surface layer (MASL) and in the capping inversion of the marine atmospheric boundary layer (MABL), as well as the horizontal variations of these vertical gradients. CASPER field measurements emphasized simultaneous characterization of electromagnetic (EM) wave propagation, the propagation environment, and the physical processes that gave rise to the measured refractivity conditions. CASPER modeling efforts utilized state-of-the-art large-eddy simulations (LESs) with a dynamically coupled MASL and phase-resolved ocean surface waves. CASPER-East was the first of two planned field campaigns, conducted in October and November 2015 offshore of Duck, North Carolina. This article highlights the scientific motivations and objectives of CASPER and provides an overview of the CASPER-East field campaign. The CASPER-East sampling strategy enabled us to obtain EM wave propagation loss as well as concurrent environmental refractive conditions along the propagation path. This article highlights the initial results from this sampling strategy showing the range-dependent propagation loss, the atmospheric and upper-oceanic variability along the propagation range, and the MASL thermodynamic profiles measured during CASPER-East.
Abstract
—J. Blunden and T. Boyer
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s.
The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal.
The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. Anna Glacier in Switzerland and Ice Worm Glacier in the United States disappeared completely. In August, as a direct result of glacial thinning over the past 20 years, a glacial lake on a tributary of the Mendenhall Glacier in Alaska burst through its ice dam and caused unprecedented flooding on Mendenhall River near Juneau.
Across the Arctic, the annual surface air temperature was the fourth highest in the 124-year record, and summer (July–September) was record warm. Smaller-than-normal snow cover extent in May and June contributed to the third-highest average peak tundra greenness in the 24-year record. In September, Arctic minimum sea ice extent was the fifth smallest in the 45-year satellite record. The 17 lowest September extents have all occurred in the last 17 years.
In Antarctica, temperatures for much of the year were up to 6°C above average over the Weddell Sea and along coastal Dronning Maud Land. The Antarctic Peninsula also experienced well-above-average temperatures during the 2022/23 melt season, which contributed to its fourth consecutive summer of above-average surface melt. On 21 February, Antarctic sea ice extent and sea ice area both reached all-time lows, surpassing records set just a year earlier. Over the course of the year, new daily record-low sea ice extents were set on 278 days. In some instances, these daily records were set by a large margin, for example, the extent on 6 July was 1.8 million km2 lower than the previous record low for that day.
Across the global oceans, the annual sea surface temperature was the highest in the 170-year record, far surpassing the previous record of 2016 by 0.13°C. Daily and monthly records were set from March onward, including an historic-high daily global mean sea surface temperature of 18.99°C recorded on 22 August. Approximately 94% of the ocean surface experienced at least one marine heatwave in 2023, while 27% experienced at least one cold spell. Globally averaged ocean heat content from the surface to 2000-m depth was record high in 2023, increasing at a rate equivalent to ∼0.7 Watts per square meter of energy applied over Earth’s surface. Global mean sea level was also record high for the 12th consecutive year, reaching 101.4 mm above the 1993 average when satellite measurements began, an increase of 8.1±1.5 mm over 2022 and the third highest year-over-year increase in the record.
A total of 82 named tropical storms were observed during the Northern and Southern Hemispheres’ storm seasons, below the 1991–2020 average of 87. Hurricane Otis became the strongest landfalling hurricane on record for the west coast of Mexico at 140 kt (72 m s−1), causing at least 52 fatalities and $12–16 billion U.S. dollars in damage. Freddy became the world’s longest-lived tropical cyclones on record, developing into a tropical cyclone on 6 February and finally dissipating on 12 March. Freddy crossed the full width of the Indian Ocean and made one landfall in Madagascar and two in Mozambique. In the Mediterranean Sea—outside of traditional tropical cyclone basins—heavy rains and flooding from Storm Daniel killed more than 4300 people and left more than 8000 missing in Libya.
The record-warm temperatures in 2023 created conditions that helped intensify the hydrological cycle. Measurements of total-column water vapor in the atmosphere were the highest on record, while the fraction of cloud area in the sky was the lowest since records began in 1980. The annual global mean precipitation total over land surfaces for 2023 was among the lowest since 1979, but global one-day maximum totals were close to average, indicating an increase in rainfall intensity.
In July, record-high areas of land across the globe (7.9%) experienced extreme drought, breaking the previous record of 6.2% in July 2022. Overall, 29.7% of land experienced moderate or worse categories of drought during the year, also a record. Mexico reported its driest (and hottest) year since the start of its record in 1950. In alignment with hot and prolonged dry conditions, Canada experienced its worst national wildfire season on record. Approximately 15 million hectares burned across the country, which was more than double the previous record from 1989. Smoke from the fires were transported far into the United States and even to western European countries. August to October 2023 was the driest three-month period in Australia in the 104-year record. Millions of hectares of bushfires burned for weeks in the Northern Territory. In South America, extreme drought developed in the latter half of the year through the Amazon basin. By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River, fell to its lowest water level since records began in 1902.
The transition from La Niña to El Niño helped bring relief to the prolonged drought conditions in equatorial eastern Africa. However, El Niño along with positive Indian Ocean dipole conditions also contributed to excessive rainfall that resulted in devastating floods over southeastern Ethiopia, Somalia, and Kenya during October to December that displaced around 1.5 million people. On 5 September, the town of Zagora, Greece, broke a national record for highest daily rainfall (754 mm in 21 hours, after which the station ceased reporting) due to Storm Daniel; this one-day accumulation was close to Zagora’s normal annual total.
Abstract
—J. Blunden and T. Boyer
In 2023, La Niña conditions that generally prevailed in the eastern Pacific Ocean from mid-2020 into early 2023 gave way to a strong El Niño by October. Atmospheric concentrations of Earth’s major greenhouse gases—carbon dioxide, methane, and nitrous oxide—all increased to record-high levels. The annual global average carbon dioxide concentration in the atmosphere rose to 419.3±0.1 ppm, which is 50% greater than the pre-industrial level. The growth from 2022 to 2023 was 2.8 ppm, the fourth highest in the record since the 1960s.
The combined short-term effects of El Niño and the long-term effects of increasing levels of heat-trapping gases in the atmosphere contributed to new records for many essential climate variables reported here. The annual global temperature across land and oceans was the highest in records dating as far back as 1850, with the last seven months (June–December) having each been record warm. Over land, the globally averaged temperature was also record high. Dozens of countries reported record or near-record warmth for the year, including China and continental Europe as a whole (warmest on record), India and Russia (second warmest), and Canada (third warmest). Intense and widespread heatwaves were reported around the world. In Vietnam, an all-time national maximum temperature record of 44.2°C was observed at Tuong Duong on 7 May, surpassing the previous record of 43.4°C at Huong Khe on 20 April 2019. In Brazil, the air temperature reached 44.8°C in Araçuaí in Minas Gerais on 20 November, potentially a new national record and 12.8°C above normal.
The effect of rising temperatures was apparent in the cryosphere, where snow cover extent by June 2023 was the smallest in the 56-year record for North America and seventh smallest for the Northern Hemisphere overall. Heatwaves contributed to the greatest average mass balance loss for Alpine glaciers around the world since the start of the record in 1970. Due to rapid volume loss beginning in 2021, St. Anna Glacier in Switzerland and Ice Worm Glacier in the United States disappeared completely. In August, as a direct result of glacial thinning over the past 20 years, a glacial lake on a tributary of the Mendenhall Glacier in Alaska burst through its ice dam and caused unprecedented flooding on Mendenhall River near Juneau.
Across the Arctic, the annual surface air temperature was the fourth highest in the 124-year record, and summer (July–September) was record warm. Smaller-than-normal snow cover extent in May and June contributed to the third-highest average peak tundra greenness in the 24-year record. In September, Arctic minimum sea ice extent was the fifth smallest in the 45-year satellite record. The 17 lowest September extents have all occurred in the last 17 years.
In Antarctica, temperatures for much of the year were up to 6°C above average over the Weddell Sea and along coastal Dronning Maud Land. The Antarctic Peninsula also experienced well-above-average temperatures during the 2022/23 melt season, which contributed to its fourth consecutive summer of above-average surface melt. On 21 February, Antarctic sea ice extent and sea ice area both reached all-time lows, surpassing records set just a year earlier. Over the course of the year, new daily record-low sea ice extents were set on 278 days. In some instances, these daily records were set by a large margin, for example, the extent on 6 July was 1.8 million km2 lower than the previous record low for that day.
Across the global oceans, the annual sea surface temperature was the highest in the 170-year record, far surpassing the previous record of 2016 by 0.13°C. Daily and monthly records were set from March onward, including an historic-high daily global mean sea surface temperature of 18.99°C recorded on 22 August. Approximately 94% of the ocean surface experienced at least one marine heatwave in 2023, while 27% experienced at least one cold spell. Globally averaged ocean heat content from the surface to 2000-m depth was record high in 2023, increasing at a rate equivalent to ∼0.7 Watts per square meter of energy applied over Earth’s surface. Global mean sea level was also record high for the 12th consecutive year, reaching 101.4 mm above the 1993 average when satellite measurements began, an increase of 8.1±1.5 mm over 2022 and the third highest year-over-year increase in the record.
A total of 82 named tropical storms were observed during the Northern and Southern Hemispheres’ storm seasons, below the 1991–2020 average of 87. Hurricane Otis became the strongest landfalling hurricane on record for the west coast of Mexico at 140 kt (72 m s−1), causing at least 52 fatalities and $12–16 billion U.S. dollars in damage. Freddy became the world’s longest-lived tropical cyclones on record, developing into a tropical cyclone on 6 February and finally dissipating on 12 March. Freddy crossed the full width of the Indian Ocean and made one landfall in Madagascar and two in Mozambique. In the Mediterranean Sea—outside of traditional tropical cyclone basins—heavy rains and flooding from Storm Daniel killed more than 4300 people and left more than 8000 missing in Libya.
The record-warm temperatures in 2023 created conditions that helped intensify the hydrological cycle. Measurements of total-column water vapor in the atmosphere were the highest on record, while the fraction of cloud area in the sky was the lowest since records began in 1980. The annual global mean precipitation total over land surfaces for 2023 was among the lowest since 1979, but global one-day maximum totals were close to average, indicating an increase in rainfall intensity.
In July, record-high areas of land across the globe (7.9%) experienced extreme drought, breaking the previous record of 6.2% in July 2022. Overall, 29.7% of land experienced moderate or worse categories of drought during the year, also a record. Mexico reported its driest (and hottest) year since the start of its record in 1950. In alignment with hot and prolonged dry conditions, Canada experienced its worst national wildfire season on record. Approximately 15 million hectares burned across the country, which was more than double the previous record from 1989. Smoke from the fires were transported far into the United States and even to western European countries. August to October 2023 was the driest three-month period in Australia in the 104-year record. Millions of hectares of bushfires burned for weeks in the Northern Territory. In South America, extreme drought developed in the latter half of the year through the Amazon basin. By the end of October, the Rio Negro at Manaus, a major tributary of the Amazon River, fell to its lowest water level since records began in 1902.
The transition from La Niña to El Niño helped bring relief to the prolonged drought conditions in equatorial eastern Africa. However, El Niño along with positive Indian Ocean dipole conditions also contributed to excessive rainfall that resulted in devastating floods over southeastern Ethiopia, Somalia, and Kenya during October to December that displaced around 1.5 million people. On 5 September, the town of Zagora, Greece, broke a national record for highest daily rainfall (754 mm in 21 hours, after which the station ceased reporting) due to Storm Daniel; this one-day accumulation was close to Zagora’s normal annual total.