Search Results

You are looking at 21 - 23 of 23 items for

  • Author or Editor: D. R. Cayan x
  • Refine by Access: All Content x
Clear All Modify Search
Céline Bonfils
,
Benjamin D. Santer
,
David W. Pierce
,
Hugo G. Hidalgo
,
Govindasamy Bala
,
Tapash Das
,
Tim P. Barnett
,
Daniel R. Cayan
,
Charles Doutriaux
,
Andrew W. Wood
,
Art Mirin
, and
Toru Nozawa

Abstract

Large changes in the hydrology of the western United States have been observed since the mid-twentieth century. These include a reduction in the amount of precipitation arriving as snow, a decline in snowpack at low and midelevations, and a shift toward earlier arrival of both snowmelt and the centroid (center of mass) of streamflows. To project future water supply reliability, it is crucial to obtain a better understanding of the underlying cause or causes for these changes. A regional warming is often posited as the cause of these changes without formal testing of different competitive explanations for the warming. In this study, a rigorous detection and attribution analysis is performed to determine the causes of the late winter/early spring changes in hydrologically relevant temperature variables over mountain ranges of the western United States. Natural internal climate variability, as estimated from two long control climate model simulations, is insufficient to explain the rapid increase in daily minimum and maximum temperatures, the sharp decline in frost days, and the rise in degree-days above 0°C (a simple proxy for temperature-driven snowmelt). These observed changes are also inconsistent with the model-predicted responses to variability in solar irradiance and volcanic activity. The observations are consistent with climate simulations that include the combined effects of anthropogenic greenhouse gases and aerosols. It is found that, for each temperature variable considered, an anthropogenic signal is identifiable in observational fields. The results are robust to uncertainties in model-estimated fingerprints and natural variability noise, to the choice of statistical downscaling method, and to various processing options in the detection and attribution method.

Full access
Julie A. Vano
,
Bradley Udall
,
Daniel R. Cayan
,
Jonathan T. Overpeck
,
Levi D. Brekke
,
Tapash Das
,
Holly C. Hartmann
,
Hugo G. Hidalgo
,
Martin Hoerling
,
Gregory J. McCabe
,
Kiyomi Morino
,
Robert S. Webb
,
Kevin Werner
, and
Dennis P. Lettenmaier

The Colorado River is the primary water source for more than 30 million people in the United States and Mexico. Recent studies that project streamf low changes in the Colorado River all project annual declines, but the magnitude of the projected decreases range from less than 10% to 45% by the mid-twenty-first century. To understand these differences, we address the questions the management community has raised: Why is there such a wide range of projections of impacts of future climate change on Colorado River streamflow, and how should this uncertainty be interpreted? We identify four major sources of disparities among studies that arise from both methodological and model differences. In order of importance, these are differences in 1) the global climate models (GCMs) and emission scenarios used; 2) the ability of land surface and atmospheric models to simulate properly the high-elevation runoff source areas; 3) the sensitivities of land surface hydrology models to precipitation and temperature changes; and 4) the methods used to statistically downscale GCM scenarios. In accounting for these differences, there is substantial evidence across studies that future Colorado River streamflow will be reduced under the current trajectories of anthropogenic greenhouse gas emissions because of a combination of strong temperature-induced runoff curtailment and reduced annual precipitation. Reconstructions of preinstrumental streamflows provide additional insights; the greatest risk to Colorado River streamf lows is a multidecadal drought, like that observed in paleoreconstructions, exacerbated by a steady reduction in flows due to climate change. This could result in decades of sustained streamflows much lower than have been observed in the ~100 years of instrumental record.

Full access
Michael J. DeFlorio
,
Agniv Sengupta
,
Christopher M. Castellano
,
Jiabao Wang
,
Zhenhai Zhang
,
Alexander Gershunov
,
Kristen Guirguis
,
Rosa Luna Niño
,
Rachel E. S. Clemesha
,
Ming Pan
,
Mu Xiao
,
Brian Kawzenuk
,
Peter B. Gibson
,
William Scheftic
,
Patrick D. Broxton
,
Matthew B. Switanek
,
Jing Yuan
,
Michael D. Dettinger
,
Chad W. Hecht
,
Daniel R. Cayan
,
Bruce D. Cornuelle
,
Arthur J. Miller
,
Julie Kalansky
,
Luca Delle Monache
,
F. Martin Ralph
,
Duane E. Waliser
,
Andrew W. Robertson
,
Xubin Zeng
,
David G. DeWitt
,
Jeanine Jones
, and
Michael L. Anderson

Abstract

California experienced a historic run of nine consecutive landfalling atmospheric rivers (ARs) in three weeks’ time during winter 2022/23. Following three years of drought from 2020 to 2022, intense landfalling ARs across California in December 2022–January 2023 were responsible for bringing reservoirs back to historical averages and producing damaging floods and debris flows. In recent years, the Center for Western Weather and Water Extremes and collaborating institutions have developed and routinely provided to end users peer-reviewed experimental seasonal (1–6 month lead time) and subseasonal (2–6 week lead time) prediction tools for western U.S. ARs, circulation regimes, and precipitation. Here, we evaluate the performance of experimental seasonal precipitation forecasts for winter 2022/23, along with experimental subseasonal AR activity and circulation forecasts during the December 2022 regime shift from dry conditions to persistent troughing and record AR-driven wetness over the western United States. Experimental seasonal precipitation forecasts were too dry across Southern California (likely due to their overreliance on La Niña), and the observed above-normal precipitation across Northern and Central California was underpredicted. However, experimental subseasonal forecasts skillfully captured the regime shift from dry to wet conditions in late December 2022 at 2–3 week lead time. During this time, an active MJO shift from phases 4 and 5 to 6 and 7 occurred, which historically tilts the odds toward increased AR activity over California. New experimental seasonal and subseasonal synthesis forecast products, designed to aggregate information across institutions and methods, are introduced in the context of this historic winter to provide situational awareness guidance to western U.S. water managers.

Open access