Search Results

You are looking at 21 - 30 of 30 items for

  • Author or Editor: D.A. Randall x
  • Refine by Access: All Content x
Clear All Modify Search
D.A. Randall, D.A. Dazlich, C. Zhang, A.S. Denning, P.J. Sellers, C.J. Tucker, L. Bounoua, J.A. Berry, G.J. Collatz, C.B. Field, S.O. Los, C.O. Justice, and I. Fung


SiB2, the second-generation land-surface parameterization developed by Sellers et al., has been incorporated into the Colorado State University general circulation model and tested in multidecade simulation. The control run uses a “bucket” hydrology but employs the same surface albedo and surface roughness distributions as the SiB2 run.

Results show that SiB2 leads to a general warming of the continents, as evidenced in the ground temperature, surface air temperature, and boundary-layer-mean potential temperature. The surface sensible heat flux increases and the latent heat flux decreases. This warming occurs virtually everywhere but is most spectacular over Siberia in winter.

Precipitation generally decreases over land but increases in the monsoon regions, especially the Amazon basin in January and equatorial Africa and Southeast Asia in July. Evaporation decreases considerably, especially in dry regions such as the Sahara. The excess of precipitation over evaporation increases in the monsoon regions.

The precipitable water (vertically integrated water vapor content) generally decreases over land but increases in the monsoon regions. The mixing ratio of the boundary-layer air decreases over newly all continental areas, however, including the monsoon regions. The average (composite) maximum boundary-layer depth over the diurnal cycle increases in the monsoon regions, as does the average PBL turbulence kinetic energy. The average boundary-layer wind speed also increases over most continental regions.

Groundwater content generally increases in rainy regions and decreases in dry regions, so that SiB2 has a tendency to increase its spatial variability. SiB2 leas to a general reduction of cloudiness over land. The net surface longwave cooling of the surface increases quite dramatically over land, in accordance with the increased surface temperatures and decreased cloudiness. The solar radiation absorbed at the ground also increases.

SiB2 has modest effects on the simulated general circulation of the atmosphere. Its most important impacts on the model are to improve the simulations of surface temperature and snow cover and to enable the simulation of the net rate of terrestrial carbon assimilation

Full access
P. Bechtold, S. K. Krueger, W. S. Lewellen, E. van Meijgaard, C.-H. Moeng, D. A. Randall, A. van Ulden, and S. Wang

Several one-dimensional (ID) cloud/turbulence ensemble modeling results of an idealized nighttime marine stratocumulus case are compared to large eddy simulation (LES). This type of model intercomparison was one of the objects of the first Global Energy and Water Cycle Experiment Cloud System Study boundary layer modeling workshop held at the National Center for Atmospheric Research on 16–18 August 1994.

Presented are results obtained with different 1D models, ranging from bulk models (including only one or two vertical layers) to various types (first order to third order) of multilayer turbulence closure models. The ID results fall within the scatter of the LES results. It is shown that ID models can reasonably represent the main features (cloud water content, cloud fraction, and some turbulence statistics) of a well-mixed stratocumulus-topped boundary layer.

Also addressed is the question of what model complexity is necessary and can be afforded for a reasonable representation of stratocumulus clouds in mesoscale or global-scale operational models. Bulk models seem to be more appropriate for climate studies, whereas a multilayer turbulence scheme is best suited in mesoscale models having at least 100- to 200-m vertical resolution inside the boundary layer.

Full access
L. Bounoua, G. J. Collatz, P. J. Sellers, D. A. Randall, D. A. Dazlich, S. O. Los, J. A. Berry, I. Fung, C. J. Tucker, C. B. Field, and T. G. Jensen


The radiative and physiological effects of doubled atmospheric carbon dioxide (CO2) on climate are investigated using a coupled biosphere–atmosphere model. Five 30-yr climate simulations, designed to assess the radiative and physiological effects of doubled CO2, were compared to a 30-yr control run.

When the CO2 concentration was doubled for the vegetation physiological calculations only assuming no changes in vegetation biochemistry, the mean temperature increase over land was rather small (0.3 K) and was associated with a slight decrease in precipitation (−0.3%). In a second case, the vegetation was assumed to have adapted its biochemistry to a doubled CO2 (2 × CO2) atmosphere and this down regulation caused a 35% decrease in stomatal conductance and a 0.7-K increase in land surface temperature. The response of the terrestrial biosphere to radiative forcing alone—that is, a conventional greenhouse warming effect—revealed important interactions between the climate and the vegetation. Although the global mean photosynthesis exhibited no change, a slight stimulation was observed in the tropical regions, whereas in the northern latitudes photosynthesis and canopy conductance decreased as a result of high temperature stress during the growing season. This was associated with a temperature increase of more than 2 K greater in the northern latitudes than in the Tropics (4.0 K vs 1.7 K). These interactions also resulted in an asymmetry in the diurnal temperature cycle, especially in the Tropics where the nighttime temperature increase due to radiative forcing was about twice that of the daytime, an effect not discernible in the daily mean temperatures. The radiative forcing resulted in a mean temperature increase over land of 2.6 K and 7% increase in precipitation with the least effect in the Tropics. As the physiological effects were imposed along with the radiative effects, the overall temperature increase over land was 2.7 K but with a smaller difference (0.7 K) between the northern latitudes and the Tropics. The radiative forcing resulted in an increase in available energy at the earth’s surface and, in the absence of physiological effects, the evapotranspiration increased. However, changes in the physiological control of evapotranspiration due to increased CO2 largely compensated for the radiative effects and reduced the evapotranspiration approximately to its control value.

Full access
N. Sato, P.J. Sellers, D.A. Randall, E.K. Schneider, J. Shukla, J.L. Kinter III, Y-T. Hou, and E. Albertazzi


The Simple Biosphere Model (SiB) of Sellers et al. was designed to simulate the interactions between the Earth's land surface and the atmosphere by treating the vegetation explicitly and realistically, thereby incorporating the biophysical controls on the exchanges of radiation, momentum, sensible and latent heat between the two systems. This paper describes the steps taken to implement SiB in a modified version of the National Meteorological Center's global spectral general circulation model (GCM) and explores the impact of the implementation on the simulated land surface fluxes and near-surface meteorological conditions. The coupled model (SiB-GCM) was used to produce summer and winter simulations. The same GCM was used with a conventional hydrological model (Ctl-GCM) to produce comparable “control” summer and winter simulations for comparison.

It was found that SiB-GCM produced a more realistic partitioning of energy at the land surface than Ctl-GCM. Generally, SiB-GCM produced more sensible heat flux and less latent heat flux over vegetated land than did Ctl-GCM and this resulted in a much deeper daytime planetary boundary layer and reduced precipitation rates over the continents in SiB-GCM. In the summer simulation, the 200 mb jet stream was slightly weakened in the SiB-GCM relative to the Ctl-GCM results and analyses made from observations.

Full access
J. A. Curry, P. V. Hobbs, M. D. King, D. A. Randall, P. Minnis, G. A. Isaac, J. O. Pinto, T. Uttal, A. Bucholtz, D. G. Cripe, H. Gerber, C. W. Fairall, T. J. Garrett, J. Hudson, J. M. Intrieri, C. Jakob, T. Jensen, P. Lawson, D. Marcotte, L. Nguyen, P. Pilewskie, A. Rangno, D. C. Rogers, K. B. Strawbridge, F. P. J. Valero, A. G. Williams, and D. Wylie

An overview is given of the First ISCCP Regional Experiment Arctic Clouds Experiment that was conducted during April–July 1998. The principal goal of the field experiment was to gather the data needed to examine the impact of arctic clouds on the radiation exchange between the surface, atmosphere, and space, and to study how the surface influences the evolution of boundary layer clouds. The observations will be used to evaluate and improve climate model parameterizations of cloud and radiation processes, satellite remote sensing of cloud and surface characteristics, and understanding of cloud–radiation feedbacks in the Arctic. The experiment utilized four research aircraft that flew over surface-based observational sites in the Arctic Ocean and at Barrow, Alaska. This paper describes the programmatic and scientific objectives of the project, the experimental design (including research platforms and instrumentation), the conditions that were encountered during the field experiment, and some highlights of preliminary observations, modeling, and satellite remote sensing studies.

Full access
M. P. McCormick, D. M. Winker, E. V. Browell, J. A. Coakley, C. S. Gardner, R. M. Hoff, G. S. Kent, S. H. Melfi, R. T. Menzies, C. M. R. Piatt, D. A. Randall, and J. A. Reagan

The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series of flights on the space shuttle beginning in 1994. Employing a three-wavelength Nd:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

Full access
Maurice Blackmon, Byron Boville, Frank Bryan, Robert Dickinson, Peter Gent, Jeffrey Kiehl, Richard Moritz, David Randall, Jagadish Shukla, Susan Solomon, Gordon Bonan, Scott Doney, Inez Fung, James Hack, Elizabeth Hunke, James Hurrell, John Kutzbach, Jerry Meehl, Bette Otto-Bliesner, R. Saravanan, Edwin K. Schneider, Lisa Sloan, Michael Spall, Karl Taylor, Joseph Tribbia, and Warren Washington

The Community Climate System Model (CCSM) has been created to represent the principal components of the climate system and their interactions. Development and applications of the model are carried out by the U.S. climate research community, thus taking advantage of both wide intellectual participation and computing capabilities beyond those available to most individual U.S. institutions. This article outlines the history of the CCSM, its current capabilities, and plans for its future development and applications, with the goal of providing a summary useful to present and future users.

The initial version of the CCSM included atmosphere and ocean general circulation models, a land surface model that was grafted onto the atmosphere model, a sea-ice model, and a “flux coupler” that facilitates information exchanges among the component models with their differing grids. This version of the model produced a successful 300-yr simulation of the current climate without artificial flux adjustments. The model was then used to perform a coupled simulation in which the atmospheric CO2 concentration increased by 1 % per year.

In this version of the coupled model, the ocean salinity and deep-ocean temperature slowly drifted away from observed values. A subsequent correction to the roughness length used for sea ice significantly reduced these errors. An updated version of the CCSM was used to perform three simulations of the twentieth century's climate, and several projections of the climate of the twenty-first century.

The CCSM's simulation of the tropical ocean circulation has been significantly improved by reducing the background vertical diffusivity and incorporating an anisotropic horizontal viscosity tensor. The meridional resolution of the ocean model was also refined near the equator. These changes have resulted in a greatly improved simulation of both the Pacific equatorial undercurrent and the surface countercurrents. The interannual variability of the sea surface temperature in the central and eastern tropical Pacific is also more realistic in simulations with the updated model.

Scientific challenges to be addressed with future versions of the CCSM include realistic simulation of the whole atmosphere, including the middle and upper atmosphere, as well as the troposphere; simulation of changes in the chemical composition of the atmosphere through the incorporation of an integrated chemistry model; inclusion of global, prognostic biogeochemical components for land, ocean, and atmosphere; simulations of past climates, including times of extensive continental glaciation as well as times with little or no ice; studies of natural climate variability on seasonal-to-centennial timescales; and investigations of anthropogenic climate change. In order to make such studies possible, work is under way to improve all components of the model. Plans call for a new version of the CCSM to be released in 2002. Planned studies with the CCSM will require much more computer power than is currently available.

Full access
J. Teixeira, S. Cardoso, M. Bonazzola, J. Cole, A. DelGenio, C. DeMott, C. Franklin, C. Hannay, C. Jakob, Y. Jiao, J. Karlsson, H. Kitagawa, M. Köhler, A. Kuwano-Yoshida, C. LeDrian, J. Li, A. Lock, M. J. Miller, P. Marquet, J. Martins, C. R. Mechoso, E. v. Meijgaard, I. Meinke, P. M. A. Miranda, D. Mironov, R. Neggers, H. L. Pan, D. A. Randall, P. J. Rasch, B. Rockel, W. B. Rossow, B. Ritter, A. P. Siebesma, P. M. M. Soares, F. J. Turk, P. A. Vaillancourt, A. Von Engeln, and M. Zhao


A model evaluation approach is proposed in which weather and climate prediction models are analyzed along a Pacific Ocean cross section, from the stratocumulus regions off the coast of California, across the shallow convection dominated trade winds, to the deep convection regions of the ITCZ—the Global Energy and Water Cycle Experiment Cloud System Study/Working Group on Numerical Experimentation (GCSS/WGNE) Pacific Cross-Section Intercomparison (GPCI). The main goal of GPCI is to evaluate and help understand and improve the representation of tropical and subtropical cloud processes in weather and climate prediction models. In this paper, a detailed analysis of cloud regime transitions along the cross section from the subtropics to the tropics for the season June–July–August of 1998 is presented. This GPCI study confirms many of the typical weather and climate prediction model problems in the representation of clouds: underestimation of clouds in the stratocumulus regime by most models with the corresponding consequences in terms of shortwave radiation biases; overestimation of clouds by the 40-yr ECMWF Re-Analysis (ERA-40) in the deep tropics (in particular) with the corresponding impact in the outgoing longwave radiation; large spread between the different models in terms of cloud cover, liquid water path and shortwave radiation; significant differences between the models in terms of vertical cross sections of cloud properties (in particular), vertical velocity, and relative humidity. An alternative analysis of cloud cover mean statistics is proposed where sharp gradients in cloud cover along the GPCI transect are taken into account. This analysis shows that the negative cloud bias of some models and ERA-40 in the stratocumulus regions [as compared to the first International Satellite Cloud Climatology Project (ISCCP)] is associated not only with lower values of cloud cover in these regimes, but also with a stratocumulus-to-cumulus transition that occurs too early along the trade wind Lagrangian trajectory. Histograms of cloud cover along the cross section differ significantly between models. Some models exhibit a quasi-bimodal structure with cloud cover being either very large (close to 100%) or very small, while other models show a more continuous transition. The ISCCP observations suggest that reality is in-between these two extreme examples. These different patterns reflect the diverse nature of the cloud, boundary layer, and convection parameterizations in the participating weather and climate prediction models.

Full access
Russell S. Vose, Scott Applequist, Mark A. Bourassa, Sara C. Pryor, Rebecca J. Barthelmie, Brian Blanton, Peter D. Bromirski, Harold E. Brooks, Arthur T. DeGaetano, Randall M. Dole, David R. Easterling, Robert E. Jensen, Thomas R. Karl, Richard W. Katz, Katherine Klink, Michael C. Kruk, Kenneth E. Kunkel, Michael C. MacCracken, Thomas C. Peterson, Karsten Shein, Bridget R. Thomas, John E. Walsh, Xiaolan L. Wang, Michael F. Wehner, Donald J. Wuebbles, and Robert S. Young

This scientific assessment examines changes in three climate extremes—extratropical storms, winds, and waves—with an emphasis on U.S. coastal regions during the cold season. There is moderate evidence of an increase in both extratropical storm frequency and intensity during the cold season in the Northern Hemisphere since 1950, with suggestive evidence of geographic shifts resulting in slight upward trends in offshore/coastal regions. There is also suggestive evidence of an increase in extreme winds (at least annually) over parts of the ocean since the early to mid-1980s, but the evidence over the U.S. land surface is inconclusive. Finally, there is moderate evidence of an increase in extreme waves in winter along the Pacific coast since the 1950s, but along other U.S. shorelines any tendencies are of modest magnitude compared with historical variability. The data for extratropical cyclones are considered to be of relatively high quality for trend detection, whereas the data for extreme winds and waves are judged to be of intermediate quality. In terms of physical causes leading to multidecadal changes, the level of understanding for both extratropical storms and extreme winds is considered to be relatively low, while that for extreme waves is judged to be intermediate. Since the ability to measure these changes with some confidence is relatively recent, understanding is expected to improve in the future for a variety of reasons, including increased periods of record and the development of “climate reanalysis” projects.

Full access
Randall M. Dole, J. Ryan Spackman, Matthew Newman, Gilbert P. Compo, Catherine A. Smith, Leslie M. Hartten, Joseph J. Barsugli, Robert S. Webb, Martin P. Hoerling, Robert Cifelli, Klaus Wolter, Christopher D. Barnet, Maria Gehne, Ronald Gelaro, George N. Kiladis, Scott Abbott, Elena Akish, John Albers, John M. Brown, Christopher J. Cox, Lisa Darby, Gijs de Boer, Barbara DeLuisi, Juliana Dias, Jason Dunion, Jon Eischeid, Christopher Fairall, Antonia Gambacorta, Brian K. Gorton, Andrew Hoell, Janet Intrieri, Darren Jackson, Paul E. Johnston, Richard Lataitis, Kelly M. Mahoney, Katherine McCaffrey, H. Alex McColl, Michael J. Mueller, Donald Murray, Paul J. Neiman, William Otto, Ola Persson, Xiao-Wei Quan, Imtiaz Rangwala, Andrea J. Ray, David Reynolds, Emily Riley Dellaripa, Karen Rosenlof, Naoko Sakaeda, Prashant D. Sardeshmukh, Laura C. Slivinski, Lesley Smith, Amy Solomon, Dustin Swales, Stefan Tulich, Allen White, Gary Wick, Matthew G. Winterkorn, Daniel E. Wolfe, and Robert Zamora


Forecasts by mid-2015 for a strong El Niño during winter 2015/16 presented an exceptional scientific opportunity to accelerate advances in understanding and predictions of an extreme climate event and its impacts while the event was ongoing. Seizing this opportunity, the National Oceanic and Atmospheric Administration (NOAA) initiated an El Niño Rapid Response (ENRR), conducting the first field campaign to obtain intensive atmospheric observations over the tropical Pacific during El Niño.

The overarching ENRR goal was to determine the atmospheric response to El Niño and the implications for predicting extratropical storms and U.S. West Coast rainfall. The field campaign observations extended from the central tropical Pacific to the West Coast, with a primary focus on the initial tropical atmospheric response that links El Niño to its global impacts. NOAA deployed its Gulfstream-IV (G-IV) aircraft to obtain observations around organized tropical convection and poleward convective outflow near the heart of El Niño. Additional tropical Pacific observations were obtained by radiosondes launched from Kiritimati , Kiribati, and the NOAA ship Ronald H. Brown, and in the eastern North Pacific by the National Aeronautics and Space Administration (NASA) Global Hawk unmanned aerial system. These observations were all transmitted in real time for use in operational prediction models. An X-band radar installed in Santa Clara, California, helped characterize precipitation distributions. This suite supported an end-to-end capability extending from tropical Pacific processes to West Coast impacts. The ENRR observations were used during the event in operational predictions. They now provide an unprecedented dataset for further research to improve understanding and predictions of El Niño and its impacts.

Open access