Search Results

You are looking at 21 - 30 of 38 items for

  • Author or Editor: David J. Karoly x
  • Refine by Access: All Content x
Clear All Modify Search
David J. Karoly
,
R. Alan Plumb
, and
Mingfang Ting

Abstract

Examples of the diagnostic of the horizontal propagation of stationary wave activity proposed by Plumb are presented for a simple model of the atmospheric response to thermal forcing in the tropics, for the observed Southern Hemisphere winter mean stationary waves and for several cases of anomalous quasi-stationary waves in both the Northern and Southern hemispheres. For the simple model, the propagation of wave activity out of the tropics is clear. From the observational data, the apparent sources of anomalous stationary wave activity are located in the regions of the major middle latitude jets and storm tracks in both hemispheres in most cases. The results suggest that midlatitude processes, such as instabilities of the jet stream or interaction with transient eddies, are the major mechanisms for forcing anomalous stationary waves. There are indications that Rossby-like wave propagation from low latitudes plays a role in forcing anomalous stationary waves associated with Southern Oscillation events and with some cases of anomalous stationary waves in the Southern Hemisphere.

Full access
Wenju Cai
,
Peter H. Whetton
, and
David J. Karoly

Abstract

Recent results from greenhouse warming experiments, most of which follow the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario, have shown that under increasing atmospheric CO2 concentration, the Antarctic Oscillation (AAO) exhibits a positive trend. However, its response during the subsequent CO2 stabilization period has not been explored. In this study, it is shown that the upward trend of the AAO reverses during such a stabilization period. This evolution of an upward trend and a subsequent reversal is present in each ensemble of three greenhouse simulations using three versions of the CSIRO Mark 2 coupled climate model. The evolution is shown to be linked with that of surface temperature, which also displays a corresponding trend and reversal, incorporating the well-known feature of interhemispheric warming asymmetry with smaller warming in the Southern Hemisphere (smaller as latitude increases) than that in the Northern Hemisphere during the transient period, and vice versa during the stabilization period. These results indicate that once CO2 concentration stabilizes, reversal of the AAO trend established during the transient period is likely to be a robust feature, as it is underpinned by the likelihood that latitudinal warming differences will reduce or disappear. The implication is that climatic impacts associated with the AAO trend during the transient period may be reversible if CO2 stabilization is achieved.

Full access
Andrew D. King
,
David J. Karoly
, and
Geert Jan van Oldenborgh
Full access
Mitchell T. Black
,
David J. Karoly
, and
Andrew D. King
Full access
Fiona M. Guest
,
Michael J. Reeder
,
Crispin J. Marks
, and
David J. Karoly

Abstract

This study examines the properties of inertia–gravity waves observed in the lower stratosphere over Macquarie Island, how these properties vary with season, and the likely source of the waves. The waves are observed in high-resolution upper-air ozonesonde soundings of wind and temperature released from Macquarie Island during the 1994 ASHOE–MAESA program.

The properties of the inertia–gravity waves observed in the soundings are quantified using hodograph and rotary spectral analyses. The analyzed waves have horizontal wavelengths between 100 and 1000 km, vertical wavelengths between about 1 and 7 km, intrinsic frequencies between f and 2f, and horizontal trace speeds between −50 and 30 m s−1. There appears to be a seasonal cycle in the inertia–gravity wave activity in the lower stratosphere, the minimum being in the austral winter when the background zonal flow is strong and westerly and its vertical shear is positive. In contrast, the variance of the horizontal perturbation winds does not show a similar seasonal cycle.

Inertia–gravity waves are detected over Macquarie Island on days with a common synoptic pattern. Two features define this synoptic pattern: 1) an upper-level jet and associated surface front lying upstream of Macquarie Island, and 2) a 300-hPa height field with Macquarie Island located between the inflection axis and the downstream ridge. This common synoptic pattern is observed on 16 of the 21 days on which inertia–gravity waves were detected. Moreover, the pattern is not observed on 15 of the 21 days in which inertia–gravity waves are not identified. This common synoptic pattern shows a seasonal cycle similar to that found for the inertia–gravity wave activity. Analyses of the ozonesonde soundings suggest also that the source of the inertia–gravity waves is in the troposphere. Using GROGRAT, the ray-tracing model developed by Marks and Eckermann, a cone of rays is released 21 km above Macquarie Island and traced backward in time. These rays suggest that the inertia–gravity waves are generated in the jet–front system southwest of Macquarie Island.

Full access
Karin L. Gleason
,
Jay H. Lawrimore
,
David H. Levinson
,
Thomas R. Karl
, and
David J. Karoly

Abstract

A revised framework is presented that quantifies observed changes in the climate of the contiguous United States through analysis of a revised version of the U.S. Climate Extremes Index (CEI). The CEI is based on a set of climate extremes indicators that measure the fraction of the area of the United States experiencing extremes in monthly mean surface temperature, daily precipitation, and drought (or moisture surplus). In the revised CEI, auxiliary station data, including recently digitized pre-1948 data, are incorporated to extend it further back in time and to improve spatial coverage. The revised CEI is updated for the period from 1910 to the present in near–real time and is calculated for eight separate seasons, or periods.

Results for the annual revised CEI are similar to those from the original CEI. Observations over the past decade continue to support the finding that the area experiencing much above-normal maximum and minimum temperatures in recent years has been on the rise, with infrequent occurrence of much below- normal mean maximum and minimum temperatures. Conversely, extremes in much below-normal mean maximum and minimum temperatures indicate a decline from about 1910 to 1930. An increasing trend in the area experiencing much above-normal proportion of heavy daily precipitation is observed from about 1950 to the present. A period with a much greater-than-normal number of days without precipitation is also noted from about 1910 to the mid-1930s. Warm extremes in mean maximum and minimum temperature observed during the summer and warm seasons show a more pronounced increasing trend since the mid-1970s. Results from the winter season show large variability in extremes and little evidence of a trend. The cold season CEI indicates an increase in extremes since the early 1970s yet has large multidecadal variability.

Full access
Andrea J. Dittus
,
David J. Karoly
,
Sophie C. Lewis
,
Lisa V. Alexander
, and
Markus G. Donat

Abstract

The skill of eight climate models in simulating the variability and trends in the observed areal extent of daily temperature and precipitation extremes is evaluated across five large-scale regions, using the climate extremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern Hemisphere, results show that overall the models are generally able to simulate the decadal variability and trends of the observed temperature and precipitation components over the period 1951–2005. Climate models are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using simulations performed under different radiative forcing scenarios, the causes of simulated and observed trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum temperature components for all regions. In North America, a strong anthropogenically forced trend in the maximum temperature component is simulated despite no significant trend in the gridded observations, although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions. However, observed trends in the area experiencing extreme total annual precipitation and extreme number of wet and dry days are not reproduced by climate models under any forcing scenario.

Full access
Mandy B. Freund
,
Josephine R. Brown
,
Benjamin J. Henley
,
David J. Karoly
, and
Jaclyn N. Brown

Abstract

Given the consequences and global significance of El Niño–Southern Oscillation (ENSO) events it is essential to understand the representation of El Niño diversity in climate models for the present day and the future. In recent decades, El Niño events have occurred more frequently in the central Pacific (CP). Eastern Pacific (EP) El Niño events have increased in intensity. However, the processes and future implications of these observed changes in El Niño are not well understood. Here, the frequency and intensity of El Niño events are assessed in models from phases 5 and 6 of the Coupled Model Intercomparison Project (CMIP5 and CMIP6), and results are compared to extended instrumental and multicentury paleoclimate records. Future changes of El Niño are stronger for CP events than for EP events and differ between models. Models with a projected La Niña–like mean-state warming pattern show a tendency toward more EP but fewer CP events compared to models with an El Niño–like warming pattern. Among the models with more El Niño–like warming, differences in future El Niño can be partially explained by Pacific decadal variability (PDV). During positive PDV phases, more El Niño events occur, so future frequency changes are mainly determined by projected changes during positive PDV phases. Similarly, the intensity of El Niño is strongest during positive PDV phases. Future changes to El Niño may thus depend on both mean-state warming and decadal-scale natural variability.

Free access
Joëlle Gergis
,
Raphael Neukom
,
Ailie J. E. Gallant
, and
David J. Karoly

Abstract

Multiproxy warm season (September–February) temperature reconstructions are presented for the combined land–ocean region of Australasia (0°–50°S, 110°E–180°) covering 1000–2001. Using between 2 (R2) and 28 (R28) paleoclimate records, four 1000-member ensemble reconstructions of regional temperature are developed using four statistical methods: principal component regression (PCR), composite plus scale (CPS), Bayesian hierarchical models (LNA), and pairwise comparison (PaiCo). The reconstructions are then compared with a three-member ensemble of GISS-E2-R climate model simulations and independent paleoclimate records. Decadal fluctuations in Australasian temperatures are remarkably similar between the four reconstruction methods. There are, however, differences in the amplitude of temperature variations between the different statistical methods and proxy networks. When the R28 network is used, the warmest 30-yr periods occur after 1950 in 77% of ensemble members over all methods. However, reconstructions based on only the longest records (R2 and R3 networks) indicate that single 30- and 10-yr periods of similar or slightly higher temperatures than in the late twentieth century may have occurred during the first half of the millennium. Regardless, the most recent instrumental temperatures (1985–2014) are above the 90th percentile of all 12 reconstruction ensembles (four reconstruction methods based on three proxy networks—R28, R3, and R2). The reconstructed twentieth-century warming cannot be explained by natural variability alone using GISS-E2-R. In this climate model, anthropogenic forcing is required to produce the rate and magnitude of post-1950 warming observed in the Australasian region. These paleoclimate results are consistent with other studies that attribute the post-1950 warming in Australian temperature records to increases in atmospheric greenhouse gas concentrations.

Full access
Andrea J. Dittus
,
David J. Karoly
,
Sophie C. Lewis
, and
Lisa V. Alexander

Abstract

This study examines trends in the area affected by temperature and precipitation extremes across five large-scale regions using the climate extremes index (CEI) framework. Analyzing changes in temperature and precipitation extremes in terms of areal fraction provides information from a different perspective and can be useful for climate monitoring. Trends in five temperature and precipitation components are analyzed, calculated using a new method based on standard extreme indices. These indices, derived from daily meteorological station data, are obtained from two global land-based gridded extreme indices datasets. The four continental-scale regions of Europe, North America, Asia, and Australia are analyzed over the period from 1951 to 2010, where sufficient data coverage is available. These components are also computed for the entire Northern Hemisphere, providing the first CEI results at the hemispheric scale. Results show statistically significant increases in the percentage area experiencing much-above-average warm days and nights and much-below-average cool days and nights for all regions, with the exception of North America for maximum temperature extremes. Increases in the area affected by precipitation extremes are also found for the Northern Hemisphere regions, particularly Europe and North America.

Full access