Search Results

You are looking at 21 - 30 of 51 items for :

  • Author or Editor: David Parsons x
  • Refine by Access: All Content x
Clear All Modify Search
Peng-Yun Wang
,
David B. Parsons
, and
Peter V. Hobbs

Abstract

The cloud and precipitation structure and the airflow associated with wavelike rainbands in a cold-frontal zone have been investigated with Doppler radar, instrumented aircraft, rawinsondes and a network of ground stations. The rainbands were oriented perpendicular to the cold front and embedded within wide cold-frontal rainbands. The wavelike rainbands were 20–40 km long, 3–6 km wide, spaced 9–13 km apart and their tops ranged from 3-5 km in height. The radar reflectivities, convergence/divergence and airflow show regular patterns associated with the rainbands.

There is evidence that wavelike rainbands were associated with generating cells aloft. These rainbands may have been initiated by shear instability in the frontal zone, since the resonant mode for such an instability had a similar orientation, movement and spacing to those observed for the rainbands.

Full access
David B. Parsons
,
Carl G. Mohr
, and
Tzvi Gal-Chen

Abstract

Pressure, buoyancy and virtual potential temperature perturbations are calculated from wind fields derived from Doppler radar data taken in a surface cold front. The dynamics of the front are similar to a density current This hypothesis is also suggested by accompanying numerical simulations of cold air outflows. The updraft at the leading edge of the cold air mass is maintained in conjunction with an upward directed pressure force. The average maximum updraft is in excess of 7 m s−1 without any appreciable potential instability present in the “undisturbed” warm-sector sounding.

The buoyancy and virtual potential temperature data reveal a front with a substantial fraction of the cooling taking place within the first 2 km of a frontal zone. Thus, the aspect ratio (width/depth) of the front, even after the filtering associated with the interpolation and retrieval process, is slightly less than one. The frontogenesis for the shear in the along-front wind and the thermal gradient are discussed. The gradient of these quantities in the lower levels is maintained by confluence and eventually destroyed by tilting of the gradients into the horizontal. The thermal fields are locally influenced by diabatic processes in the frontal updraft and behind the front. The cooling taking place in the cold air is apparently related to evaporation and melting of hydrormeteors. The virtual potential temperature reduction with this cooling is in excess of 0.5 K.

Considerable along-front variations in the pressure, wind, and precipitation field occur due to the presence of a 13-km wave. These variations in the wind field are due to the influence of the waves of the rate of frontogenesis experienced by a parcel as it moves through the frontal zone. The primary factor for the changes in frontogenesis in the direction parallel to the surface front is the variation in the confluence term.

Full access
Alan Shapiro
,
Joshua G. Gebauer
, and
David B. Parsons

Abstract

An analytical model is presented for the generation of a Blackadar-like nocturnal low-level jet in a broad baroclinic zone. The flow is forced from below (flat ground) by a surface buoyancy gradient and from above (free atmosphere) by a constant pressure gradient force. Diurnally varying mixing coefficients are specified to increase abruptly at sunrise and decrease abruptly at sunset. With attention restricted to a surface buoyancy that varies linearly with a horizontal coordinate, the Boussinesq-approximated equations of motion, thermal energy, and mass conservation reduce to a system of one-dimensional equations that can be solved analytically. Sensitivity tests with southerly jets suggest that (i) stronger jets are associated with larger decreases of the eddy viscosity at sunset (as in Blackadar theory); (ii) the nighttime surface buoyancy gradient has little impact on jet strength; and (iii) for pure baroclinic forcing (no free-atmosphere geostrophic wind), the nighttime eddy diffusivity has little impact on jet strength, but the daytime eddy diffusivity is very important and has a larger impact than the daytime eddy viscosity. The model was applied to a jet that developed in fair weather conditions over the Great Plains from southern Texas to northern South Dakota on 1 May 2020. The ECMWF Reanalysis v5 (ERA5) for the afternoon prior to jet formation showed that a broad north–south-oriented baroclinic zone covered much of the region. The peak model-predicted winds were in good agreement with ERA5 winds and lidar data from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) central facility in north-central Oklahoma.

Full access
Samuel P. Lillo
,
David B. Parsons
, and
Malaquias Peña

Abstract

A major winter storm took place over Mexico during 7 to 11 March 2016, impacting 28 states and leaving four million families without power. Extensive agricultural damage and livestock deaths were also reported with widespread snow across central and northern Mexico. North of the border, this system resulted in record-breaking flooding and severe weather in Texas and Louisiana. The event was due to a trough that deepened and cut off over central Mexico with 500-hPa heights that were nine standard deviations below normal, well beyond previous records! Motivated by the societal impacts of this event, this study investigates factors that contributed to the extreme trough and influenced its predictability in forecast models. A strong El Niño provided the antecedent conditions, with enhanced tropical convection over the central Pacific, a strengthened subtropical anticyclone, and poleward Rossby wave dispersion. However, unlike past strong El Niños, the North Pacific preceding this event was characterized by significant synoptic-scale Rossby wave activity on the midlatitude jet stream including multiple wave packets tracking around the globe during February and March. The interaction of one of these packets with the subtropical anticyclone aloft resulted in a large anticyclonic wave break over the east Pacific, leading to the amplification of the downstream trough over Mexico. The ability of numerical weather prediction to capture this extreme trough is directly related to the predictability of the Rossby wave packet. These results are also discussed within the context of the relationship between El Niño, Rossby wave activity, and extreme events in western North America.

Free access
Aaron Johnson
,
Xuguang Wang
,
Kevin R. Haghi
, and
David B. Parsons

Abstract

This paper presents a case study from an intensive observing period (IOP) during the Plains Elevated Convection at Night (PECAN) field experiment that was focused on a bore generated by nocturnal convection. Observations from PECAN IOP 25 on 11 July 2015 are used to evaluate the performance of high-resolution Weather Research and Forecasting Model forecasts, initialized using the Gridpoint Statistical Interpolation (GSI)-based ensemble Kalman filter. The focus is on understanding model errors and sensitivities in order to guide forecast improvements for bores associated with nocturnal convection. Model simulations of the bore amplitude are compared against eight retrieved vertical cross sections through the bore during the IOP. Sensitivities of forecasts to microphysics and planetary boundary layer (PBL) parameterizations are also investigated. Forecasts initialized before the bore pulls away from the convection show a more realistic bore than forecasts initialized later from analyses of the bore itself, in part due to the smoothing of the existing bore in the ensemble mean. Experiments show that the different microphysics schemes impact the quality of the simulations with unrealistically weak cold pools and bores with the Thompson and Morrison microphysics schemes, cold pools too strong with the WDM6 and more accurate with the WSM6 schemes. Most PBL schemes produced a realistic bore response to the cold pool, with the exception of the Mellor–Yamada–Nakanishi–Niino (MYNN) scheme, which creates too much turbulent mixing atop the bore. A new method of objectively estimating the depth of the near-surface stable layer corresponding to a simple two-layer model is also introduced, and the impacts of turbulent mixing on this estimate are discussed.

Full access
Hristo G. Chipilski
,
Xuguang Wang
, and
David B. Parsons

Abstract

A novel object-based algorithm capable of identifying and tracking convective outflow boundaries in convection-allowing numerical models is presented in this study. The most distinct feature of the proposed algorithm is its ability to seamlessly analyze numerically simulated density currents and bores, both of which play an important role in the dynamics of nocturnal convective systems. The unified identification and classification of these morphologically different phenomena is achieved through a multivariate approach combined with appropriate image processing techniques. The tracking component of the algorithm utilizes two dynamical constraints, which improve the object association results in comparison to methods based on statistical assumptions alone. Special attention is placed on some of the outstanding challenges regarding the formulation of the algorithm and possible ways to address those in future research. Apart from describing the technical details behind the algorithm, this study also introduces specific algorithm applications relevant to the analysis and prediction of bores. These applications are illustrated for a retrospective case study simulated with a convection-allowing ensemble prediction system. The paper highlights how the newly developed algorithm tools naturally form a foundation for understanding the initiation, structure, and evolution of bores and convective systems in the nocturnal environment.

Full access
Manda B. Chasteen
,
Steven E. Koch
, and
David B. Parsons

Abstract

Nocturnal mesoscale convective systems (MCSs) frequently develop over the Great Plains in the presence of a nocturnal low-level jet (LLJ), which contributes to convective maintenance by providing a source of instability, convergence, and low-level vertical wind shear. Although these nocturnal MCSs often dissipate during the morning, many persist into the following afternoon despite the cessation of the LLJ with the onset of solar heating. The environmental factors enabling the postsunrise persistence of nocturnal convection are currently not well understood. A thorough investigation into the processes supporting the longevity and daytime persistence of an MCS was conducted using routine observations, RAP analyses, and a WRF-ARW simulation. Elevated nocturnal convection developed in response to enhanced frontogenesis, which quickly grew upscale into a severe quasi-linear convective system (QLCS). The western portion of this QLCS reorganized into a bow echo with a pronounced cold pool and ultimately an organized leading-line, trailing-stratiform MCS as it moved into an increasingly unstable environment. Differential advection resulting from the interaction of the nocturnal LLJ with the topography of west Texas established considerable heterogeneity in moisture, CAPE, and CIN, which influenced the structure and evolution of the MCS. An inland-advected moisture plume significantly increased near-surface CAPE during the nighttime over central Texas, while the environment over southeastern Texas abruptly destabilized following the commencement of surface heating and downward moisture transport. The unique topography of the southern plains and the close proximity to the Gulf of Mexico provided an environment conducive to the postsunrise persistence of the organized MCS.

Full access
Kevin R. Haghi
,
David B. Parsons
, and
Alan Shapiro

Abstract

This study documents atmospheric bores and other convergent boundaries in the southern Great Plains’ nocturnal environment during the IHOP_2002 summer campaign. Observational evidence demonstrates that convective outflows routinely generate bores. Statistically resampled flow regimes, derived from an adaptation of hydraulic theory, agree well with observations. Specifically, convective outflows within the observed environments are likely to produce a partially blocked flow regime, which is a favorable condition for generating a bore. Once a bore develops, the direction of movement generally follows the orientation of the bulk shear vector between the nose of the nocturnal low-level jet and a height of 1.5 or 2.5 km AGL. This relationship is believed to be a consequence of wave trapping through the curvature of the horizontal wind with respect to height. This conclusion comes after analyzing the profile of the Scorer parameter. Overall, these findings provide an impetus for future investigations aimed at understanding and predicting nocturnal deep convection over this region.

Full access
Hristo G. Chipilski
,
Xuguang Wang
, and
David B. Parsons

Abstract

Using data from the 6 July 2015 PECAN case study, this paper provides the first objective assessment of how the assimilation of ground-based remote sensing profilers affects the forecasts of bore-driven convection. To account for the multiscale nature of the phenomenon, data impacts are examined separately with respect to (i) the bore environment, (ii) the explicitly resolved bore, and (iii) the bore-initiated convection. The findings from this work suggest that remote sensing profiling instruments provide considerable advantages over conventional in situ observations, especially when the retrieved data are assimilated at a high temporal frequency. The clearest forecast improvements are seen in terms of the predicted bore environment where the assimilation of kinematic profilers reduces a preexisting bias in the structure of the low-level jet. Data impacts with respect to the other two forecast components are mixed in nature. While the assimilation of thermodynamic retrievals from the Atmospheric Emitted Radiance Interferometer (AERI) results in the best convective forecast, it also creates a positive bias in the height of the convectively generated bore. Conversely, the assimilation of wind profiler data improves the characteristics of the explicitly resolved bore, but tends to further exacerbate the lack of convection in the control forecasts. Various dynamical diagnostics utilized throughout this study provide a physical insight into the data impact results and demonstrate that a successful prediction of bore-driven convection requires an accurate depiction of the internal bore structure as well as the ambient environment ahead of it.

Free access
Dylan W. Reif
,
Howard B. Bluestein
, and
David B. Parsons

Abstract

This study creates a composite sounding for nocturnal convection initiation (CI) events under weakly forced conditions and utilizes an idealized numerical simulation to assess the impact of atmospheric bores on these environments. Thirteen soundings were used to create this composite sounding. Common conditions associated with these weakly forced environments include a nocturnal low-level jet and a Brunt–Väisälä frequency of 0.011 s−1 above 900 hPa. The median lift needed for parcels to realize any convective instability is 490 m, the median convective available potential energy of these convectively unstable parcels is 992 J kg−1, and the median initial pressure of these parcels is 800 hPa. An idealized numerical simulation was utilized to examine the potential influence of bores on CI in an environment based on composite sounding. The characteristics of the simulated bore were representative of observed bores. The vertical velocities associated with this simulated bore were between 1 and 2 m s−1, and the net upward displacement of parcels was between 400 and 650 m. The vertical displacement of air parcels has two notable phases: lift by the bore itself and smaller-scale lift that occurs 100–150 km ahead of the bore passage. The prebore lift is between 50 and 200 m and appears to be related to low-frequency waves ahead of the bores. The lift with these waves was maximized in the low to midtroposphere between 1 and 4 km AGL, and this lift may play a role in assisting CI in these otherwise weakly forced environments.

Restricted access