Search Results
You are looking at 21 - 30 of 72 items for
- Author or Editor: Fan Wang x
- Refine by Access: All Content x
Abstract
Over the past decade, the number of studies that investigate aerosol–cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol–cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, 2) the feedbacks between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and 3) the significance of cloud–aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol–cloud interactions and discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems. The authors summarize the main obstacles preventing the science from making a leap—for example, the lack of concurrent profile measurements of cloud dynamics, microphysics, and aerosols over a wide region on the observation side and the large variability of cloud microphysics parameterizations resulting in a large spread of modeling results on the modeling side. Therefore, large efforts are needed to escalate understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties and cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed.
Abstract
Over the past decade, the number of studies that investigate aerosol–cloud interactions has increased considerably. Although tremendous progress has been made to improve the understanding of basic physical mechanisms of aerosol–cloud interactions and reduce their uncertainties in climate forcing, there is still poor understanding of 1) some of the mechanisms that interact with each other over multiple spatial and temporal scales, 2) the feedbacks between microphysical and dynamical processes and between local-scale processes and large-scale circulations, and 3) the significance of cloud–aerosol interactions on weather systems as well as regional and global climate. This review focuses on recent theoretical studies and important mechanisms on aerosol–cloud interactions and discusses the significances of aerosol impacts on radiative forcing and precipitation extremes associated with different cloud systems. The authors summarize the main obstacles preventing the science from making a leap—for example, the lack of concurrent profile measurements of cloud dynamics, microphysics, and aerosols over a wide region on the observation side and the large variability of cloud microphysics parameterizations resulting in a large spread of modeling results on the modeling side. Therefore, large efforts are needed to escalate understanding. Future directions should focus on obtaining concurrent measurements of aerosol properties and cloud microphysical and dynamic properties over a range of temporal and spatial scales collected over typical climate regimes and closure studies, as well as improving understanding and parameterizations of cloud microphysics such as ice nucleation, mixed-phase properties, and hydrometeor size and fall speed.
Abstract
Urban heat island circulation establishes an urban dome under stable stratification and no background wind conditions. Small-scale water models have been a very useful tool in the exploration of the mechanisms by which urban domes and their associated wind flows are formed. Data are available from a number of water-tank heat island models. Data from field measurements, computational fluid dynamics, and small-scale water-tank experiments are compared in this paper. The small-scale water-tank experiments were found to produce relatively low radial velocities, such as the radial horizontal velocity. Different relevant velocity scales developed in the literature were reviewed. The influence of the Prandtl number on convective flows was analyzed. The analysis resulted in a new convective velocity scale that is a function of the Prandtl number, and the new scale was found to work well. This new development is expected to render small-scale models more useful in urban wind studies. The new convective velocity scale may be extended to water-modeling studies of other buoyancy-driven airflows.
Abstract
Urban heat island circulation establishes an urban dome under stable stratification and no background wind conditions. Small-scale water models have been a very useful tool in the exploration of the mechanisms by which urban domes and their associated wind flows are formed. Data are available from a number of water-tank heat island models. Data from field measurements, computational fluid dynamics, and small-scale water-tank experiments are compared in this paper. The small-scale water-tank experiments were found to produce relatively low radial velocities, such as the radial horizontal velocity. Different relevant velocity scales developed in the literature were reviewed. The influence of the Prandtl number on convective flows was analyzed. The analysis resulted in a new convective velocity scale that is a function of the Prandtl number, and the new scale was found to work well. This new development is expected to render small-scale models more useful in urban wind studies. The new convective velocity scale may be extended to water-modeling studies of other buoyancy-driven airflows.
Abstract
Tropical cyclones (TCs) can pump heat downward into the ocean through inducing intense vertical mixing. Many efforts have been made to estimate the TC-induced ocean heat uptake (OHU), but spatiotemporal variability of TC-induced OHU remains unclear. This study estimates the TC-induced OHU, which takes into account the heat loss at the air–sea interface during TC passage compared to previous studies and investigates the spatiotemporal variability of TC-induced OHU and its potential impacts on ocean heat content (OHC) during the period 1985–2018. It is found that the spatial distribution of OHU is inhomogeneous, with the largest OHU occurring in the northwest Pacific, and category 3–5 TCs contribute approximately 51% of the total global OHU per year. The annually accumulated TC-induced OHUs in the regional basins exhibit pronounced interannual variability, which is closely related to the TC power dissipation index (PDI). By decomposing PDI into TC intensity, frequency, and duration, we find that the TC characteristics influencing OHU variability vary by basin. Correlation analyses suggest that the interannual variations of OHUs are linked to El Niño–Southern Oscillation (ENSO). In addition, the OHU might have the potential to influence OHC variability, especially in the equatorial eastern Pacific where there are significant positive correlations between the OHU and OHC with lags of 2–6 months. This has an important implication that TC-induced OHU might have potential effects on ENSO evolution.
Abstract
Tropical cyclones (TCs) can pump heat downward into the ocean through inducing intense vertical mixing. Many efforts have been made to estimate the TC-induced ocean heat uptake (OHU), but spatiotemporal variability of TC-induced OHU remains unclear. This study estimates the TC-induced OHU, which takes into account the heat loss at the air–sea interface during TC passage compared to previous studies and investigates the spatiotemporal variability of TC-induced OHU and its potential impacts on ocean heat content (OHC) during the period 1985–2018. It is found that the spatial distribution of OHU is inhomogeneous, with the largest OHU occurring in the northwest Pacific, and category 3–5 TCs contribute approximately 51% of the total global OHU per year. The annually accumulated TC-induced OHUs in the regional basins exhibit pronounced interannual variability, which is closely related to the TC power dissipation index (PDI). By decomposing PDI into TC intensity, frequency, and duration, we find that the TC characteristics influencing OHU variability vary by basin. Correlation analyses suggest that the interannual variations of OHUs are linked to El Niño–Southern Oscillation (ENSO). In addition, the OHU might have the potential to influence OHC variability, especially in the equatorial eastern Pacific where there are significant positive correlations between the OHU and OHC with lags of 2–6 months. This has an important implication that TC-induced OHU might have potential effects on ENSO evolution.
Abstract
The Pacific meridional mode (PMM) can modulate El Niño–Southern Oscillation (ENSO) and is also affected by ENSO-related tropical Pacific sea surface temperature anomalies (SSTAs). Two tropical feedbacks on the PMM have been proposed: a positive one of central tropical Pacific SSTAs and a negative one of eastern tropical Pacific (ETP) SSTAs, the latter of which is suggested to be active only during strong eastern Pacific (EP) El Niño events like those in 1982/83 and 1997/98. However, we find that no strong, negative PMM-like SSTAs appeared, although the PMM indices (PMMIs) were strongly negative in spring of 1983 and 1998. Observation and model experiments show that tropical warming in 1983 and 1998 not only occurred in the ETP but also extended to the date line, thus inducing wind anomalies unfavorable for establishing the wind–evaporation–SST feedback for a negative PMM in the subtropics. To understand the discrepancy between the large negative PMMIs and weak PMM-related subtropical cooling during strong EP El Niño events, we isolate the relative contributions of subtropical and tropical SSTAs to the PMMIs by calculating their spatial projections on the PMM. Analysis combined using observation and CMIP6 models shows that despite the large contribution from subtropical SSTAs, the large tropical SSTAs, especially the extreme ETP warming, could cause large negative PMMIs during strong EP El Niño events even without strong, negative subtropical SSTAs. Our study clarifies the impact of ETP warming in causing a negative PMM and indicates the overstatement of negative PMMIs by tropical SSTAs during strong EP El Niño events.
Significance Statement
This paper aims to reevaluate the previously proposed effect of strong eastern Pacific El Niño events, like those in 1982/83 and 1997/98, on exciting a negative Pacific meridional mode (PMM). We find that although the PMM indices were strongly negative during the decay of strong eastern Pacific El Niño events, the large negative PMM sea surface temperature anomalies (SSTAs) could not be observed in the subtropical Pacific. Further diagnosis indicates that the PMM index can be large if strong SSTAs occur in eastern tropical Pacific even without subtropical SSTAs, implying that one should be careful when using the PMM index.
Abstract
The Pacific meridional mode (PMM) can modulate El Niño–Southern Oscillation (ENSO) and is also affected by ENSO-related tropical Pacific sea surface temperature anomalies (SSTAs). Two tropical feedbacks on the PMM have been proposed: a positive one of central tropical Pacific SSTAs and a negative one of eastern tropical Pacific (ETP) SSTAs, the latter of which is suggested to be active only during strong eastern Pacific (EP) El Niño events like those in 1982/83 and 1997/98. However, we find that no strong, negative PMM-like SSTAs appeared, although the PMM indices (PMMIs) were strongly negative in spring of 1983 and 1998. Observation and model experiments show that tropical warming in 1983 and 1998 not only occurred in the ETP but also extended to the date line, thus inducing wind anomalies unfavorable for establishing the wind–evaporation–SST feedback for a negative PMM in the subtropics. To understand the discrepancy between the large negative PMMIs and weak PMM-related subtropical cooling during strong EP El Niño events, we isolate the relative contributions of subtropical and tropical SSTAs to the PMMIs by calculating their spatial projections on the PMM. Analysis combined using observation and CMIP6 models shows that despite the large contribution from subtropical SSTAs, the large tropical SSTAs, especially the extreme ETP warming, could cause large negative PMMIs during strong EP El Niño events even without strong, negative subtropical SSTAs. Our study clarifies the impact of ETP warming in causing a negative PMM and indicates the overstatement of negative PMMIs by tropical SSTAs during strong EP El Niño events.
Significance Statement
This paper aims to reevaluate the previously proposed effect of strong eastern Pacific El Niño events, like those in 1982/83 and 1997/98, on exciting a negative Pacific meridional mode (PMM). We find that although the PMM indices were strongly negative during the decay of strong eastern Pacific El Niño events, the large negative PMM sea surface temperature anomalies (SSTAs) could not be observed in the subtropical Pacific. Further diagnosis indicates that the PMM index can be large if strong SSTAs occur in eastern tropical Pacific even without subtropical SSTAs, implying that one should be careful when using the PMM index.
Abstract
This study identifies several modes of coevolution of various types of El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) by performing rotated season-reliant empirical orthogonal function (S-EOF) analysis with consideration of ENSO asymmetry. The first two modes reveal that early-onset ENSO is associated with subsequent strong IOD development, whereas late-onset ENSO forces an obscure IOD pattern with marginal SST anomalies in the western Indian Ocean. Further studies show that El Niño starting before early summer can more easily force an IOD event than that starting in late summer or fall, even when they are of equivalent magnitudes. This is because the atmospheric responses over the Indian Ocean to the eastern Pacific warming are in sharp contrast between early and late summer. Early-onset (late onset) El Niño can (cannot) cause favorable atmospheric circulation conditions over the Indian Ocean for inducing the western Indian Ocean warming, which facilitates the subsequent IOD development. In addition, the different propagations of ocean dynamic Rossby waves during the early- or late-onset types of ENSO are also accountable for the different IOD development. For the higher-order modes, the rotated S-EOF of “Niño only” cases shows a coevolution between a negative IOD mode and a date line Pacific El Niño, with warm sea surface temperature anomalies originating from the northern Pacific meridional mode.
Abstract
This study identifies several modes of coevolution of various types of El Niño–Southern Oscillation (ENSO) and Indian Ocean dipole (IOD) by performing rotated season-reliant empirical orthogonal function (S-EOF) analysis with consideration of ENSO asymmetry. The first two modes reveal that early-onset ENSO is associated with subsequent strong IOD development, whereas late-onset ENSO forces an obscure IOD pattern with marginal SST anomalies in the western Indian Ocean. Further studies show that El Niño starting before early summer can more easily force an IOD event than that starting in late summer or fall, even when they are of equivalent magnitudes. This is because the atmospheric responses over the Indian Ocean to the eastern Pacific warming are in sharp contrast between early and late summer. Early-onset (late onset) El Niño can (cannot) cause favorable atmospheric circulation conditions over the Indian Ocean for inducing the western Indian Ocean warming, which facilitates the subsequent IOD development. In addition, the different propagations of ocean dynamic Rossby waves during the early- or late-onset types of ENSO are also accountable for the different IOD development. For the higher-order modes, the rotated S-EOF of “Niño only” cases shows a coevolution between a negative IOD mode and a date line Pacific El Niño, with warm sea surface temperature anomalies originating from the northern Pacific meridional mode.
Abstract
A new three-dimensional method is proposed for calculating the annual mean subduction and obduction rate in the ocean and applied to the North Pacific Ocean. Due to the beta spiral, the subducted/obducted water at a given station can spread over/come from a wide range with different densities in the subsurface ocean. This new method can provide the three-dimensional feature of subduction/obduction and more accurate distribution of the annual subduction/obduction rate in density space. The spatial patterns of annual subduction/obduction rate obtained from both the classical and new methods are similar, although at individual stations the rate can be different; however, the new 3D method can greatly improve the density structure of subducted/obducted water mass. In spite of the assumption of idealized fluid in most previous studies, our analysis showed that subducted water masses can change their density due to diapycnal mixing, especially for water masses subducted at relatively shallow depths. In the North Pacific, the subduction process mainly takes place for about 1–2 months in most of the subtropical basin, while the time window for obduction is ∼100 days in the major obduction regions. Based on the SODA monthly mean climatology, the subducted/obducted water in the North Pacific is primarily distributed at depths of 80–120 m.
Significance Statement
The annual mean subduction/obduction rate is a term quantifying the large-scale irreversible downward/upward water transport between the mixed layer and the permanent pycnocline; these processes are crucially important for climate and the biogeochemical cycle in the oceans. However, the widely used classical Lagrangian method for calculating the annual subduction/obduction rate does not take the three-dimensional structure of ocean currents into consideration, which may induce errors in the destinations/sources of subducted/obducted water masses and the associated water properties. This study is focused on refining the three-dimensional features of subduction/obduction and providing a more accurate distribution of the annual subduction/obduction rate in the density space. In addition, the time window for subduction/obduction and the distribution of subducted/obducted water in the ocean interior are explored based on the SODA monthly mean climatology.
Abstract
A new three-dimensional method is proposed for calculating the annual mean subduction and obduction rate in the ocean and applied to the North Pacific Ocean. Due to the beta spiral, the subducted/obducted water at a given station can spread over/come from a wide range with different densities in the subsurface ocean. This new method can provide the three-dimensional feature of subduction/obduction and more accurate distribution of the annual subduction/obduction rate in density space. The spatial patterns of annual subduction/obduction rate obtained from both the classical and new methods are similar, although at individual stations the rate can be different; however, the new 3D method can greatly improve the density structure of subducted/obducted water mass. In spite of the assumption of idealized fluid in most previous studies, our analysis showed that subducted water masses can change their density due to diapycnal mixing, especially for water masses subducted at relatively shallow depths. In the North Pacific, the subduction process mainly takes place for about 1–2 months in most of the subtropical basin, while the time window for obduction is ∼100 days in the major obduction regions. Based on the SODA monthly mean climatology, the subducted/obducted water in the North Pacific is primarily distributed at depths of 80–120 m.
Significance Statement
The annual mean subduction/obduction rate is a term quantifying the large-scale irreversible downward/upward water transport between the mixed layer and the permanent pycnocline; these processes are crucially important for climate and the biogeochemical cycle in the oceans. However, the widely used classical Lagrangian method for calculating the annual subduction/obduction rate does not take the three-dimensional structure of ocean currents into consideration, which may induce errors in the destinations/sources of subducted/obducted water masses and the associated water properties. This study is focused on refining the three-dimensional features of subduction/obduction and providing a more accurate distribution of the annual subduction/obduction rate in the density space. In addition, the time window for subduction/obduction and the distribution of subducted/obducted water in the ocean interior are explored based on the SODA monthly mean climatology.
Abstract
Ocean heat uptake is the primary heat sink of the globe and modulates its surface warming rate. In situ observations during the past half century documented obvious multidecadal variations in the upper-ocean heat content (0–400 m; OHC400) of the Indian Ocean (IO). The observed OHC400 showed an increase of (5.9 ± 2.5) × 1021 J decade−1 during 1965–79, followed by a decrease of (−5.2 ± 2.5) × 1021 J decade−1 during 1980–96, and a rapid increase of (13.6 ± 1.1) × 1021 J decade−1 during 2000–14. These variations are faithfully reproduced by an Indo-Pacific simulation of an ocean general circulation model (OGCM), and insights into the underlying mechanisms are gained through OGCM experiments. The Pacific wind forcing through the Indonesian Throughflow (ITF) was the leading driver of the basin-integrated OHC400 increase during 1965–79 and the decrease during 1980–96, whereas after 2000 local wind and heat flux forcing within the IO made a larger contribution. The ITF heat transport is primarily dictated by Pacific trade winds. It directly affects the south IO, after which the signatures can enter the north IO through the meridional heat transport of the western boundary current. The prevailing warming of the western-to-central IO for 2000–14 was largely induced by equatorial easterly wind trends, Ekman downwelling off the equator, and northeasterly wind trends over the west Asia–East Africa coastal region. The increasing downward longwave radiation, probably reflecting anthropogenic greenhouse gas forcing, overcame the decreasing surface shortwave radiation and also made a significant contribution to the rapid upper-IO warming after 2000.
Abstract
Ocean heat uptake is the primary heat sink of the globe and modulates its surface warming rate. In situ observations during the past half century documented obvious multidecadal variations in the upper-ocean heat content (0–400 m; OHC400) of the Indian Ocean (IO). The observed OHC400 showed an increase of (5.9 ± 2.5) × 1021 J decade−1 during 1965–79, followed by a decrease of (−5.2 ± 2.5) × 1021 J decade−1 during 1980–96, and a rapid increase of (13.6 ± 1.1) × 1021 J decade−1 during 2000–14. These variations are faithfully reproduced by an Indo-Pacific simulation of an ocean general circulation model (OGCM), and insights into the underlying mechanisms are gained through OGCM experiments. The Pacific wind forcing through the Indonesian Throughflow (ITF) was the leading driver of the basin-integrated OHC400 increase during 1965–79 and the decrease during 1980–96, whereas after 2000 local wind and heat flux forcing within the IO made a larger contribution. The ITF heat transport is primarily dictated by Pacific trade winds. It directly affects the south IO, after which the signatures can enter the north IO through the meridional heat transport of the western boundary current. The prevailing warming of the western-to-central IO for 2000–14 was largely induced by equatorial easterly wind trends, Ekman downwelling off the equator, and northeasterly wind trends over the west Asia–East Africa coastal region. The increasing downward longwave radiation, probably reflecting anthropogenic greenhouse gas forcing, overcame the decreasing surface shortwave radiation and also made a significant contribution to the rapid upper-IO warming after 2000.
Abstract
Regional sea level rise in the southeast Indian Ocean (SEIO) exerts growing threats to the surrounding Australian and Indonesian coasts, but the mechanisms of sea level rise have not been firmly established. By analyzing observational datasets and model results, this study investigates multidecadal steric sea level (SSL) rise of the SEIO since the mid-twentieth century, underscoring a significant role of ocean salinity change. The average SSL rising rate from 1960 through 2018 was 7.4 ± 2.4 mm decade−1, and contributions of the halosteric and thermosteric components were ∼42% and ∼58%, respectively. The notable salinity effect arises primarily from a persistent subsurface freshening trend at 400–1000 m. Further insights are gained through the decomposition of temperature and salinity changes into the heaving (vertical displacements of isopycnal surfaces) and spicing (density-compensated temperature and salinity change) modes. The subsurface freshening trend since 1960 is mainly attributed to the spicing mode, reflecting property modifications of the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the southern Indian Ocean. Also noteworthy is a dramatic acceleration of SSL rise (20.3 ± 7.0 mm decade−1) since ∼1990, which was predominantly induced by the thermosteric component (16.3 ± 5.5 mm decade−1) associated with the heaving mode. Enhanced Ekman downwelling by surface winds and radiation forcing linked to global greenhouse gas warming mutually caused the depression of isopycnal surfaces, leading to the accelerated SSL rise through thermosteric effect. This study highlights the complexity of regional sea level rise in a rapidly changing climate, in which the role of ocean salinity is vital and time-varying.
Abstract
Regional sea level rise in the southeast Indian Ocean (SEIO) exerts growing threats to the surrounding Australian and Indonesian coasts, but the mechanisms of sea level rise have not been firmly established. By analyzing observational datasets and model results, this study investigates multidecadal steric sea level (SSL) rise of the SEIO since the mid-twentieth century, underscoring a significant role of ocean salinity change. The average SSL rising rate from 1960 through 2018 was 7.4 ± 2.4 mm decade−1, and contributions of the halosteric and thermosteric components were ∼42% and ∼58%, respectively. The notable salinity effect arises primarily from a persistent subsurface freshening trend at 400–1000 m. Further insights are gained through the decomposition of temperature and salinity changes into the heaving (vertical displacements of isopycnal surfaces) and spicing (density-compensated temperature and salinity change) modes. The subsurface freshening trend since 1960 is mainly attributed to the spicing mode, reflecting property modifications of the Subantarctic Mode Water (SAMW) and Antarctic Intermediate Water (AAIW) in the southern Indian Ocean. Also noteworthy is a dramatic acceleration of SSL rise (20.3 ± 7.0 mm decade−1) since ∼1990, which was predominantly induced by the thermosteric component (16.3 ± 5.5 mm decade−1) associated with the heaving mode. Enhanced Ekman downwelling by surface winds and radiation forcing linked to global greenhouse gas warming mutually caused the depression of isopycnal surfaces, leading to the accelerated SSL rise through thermosteric effect. This study highlights the complexity of regional sea level rise in a rapidly changing climate, in which the role of ocean salinity is vital and time-varying.
Abstract
A high-resolution (3–8 km) regional oceanic general circulation model is utilized to understand the sea surface temperature (SST) variability of Ningaloo Niño in the southeast Indian Ocean (SEIO). The model reproduces eight Ningaloo Niño events with good fidelity and reveals complicated spatial structures. Mesoscale noises are seen in the warming signature and confirmed by satellite microwave SST data. Model experiments are carried out to quantitatively evaluate the effects of key processes. The results reveal that the surface turbulent heat flux (primarily latent heat flux) is the most important process (contribution > 68%) in driving and damping the SST warming for most events, while the roles of the Indonesian Throughflow (~15%) and local wind forcing are secondary. A suitable air temperature warming is essential to reproducing the reduced surface latent heat loss during the growth of SST warming (~66%), whereas the effect of the increased air humidity is negligibly small (1%). The established SST warming in the mature phase causes increased latent heat loss that initiates the decay of warming. A 20-member ensemble simulation is performed for the 2010/11 super Ningaloo Niño, which confirms the strong influence of ocean internal processes in the redistribution of SST warming signatures. Oceanic eddies can dramatically modulate the magnitudes of local SST warming, particularly in offshore areas where the “signal-to-noise” ratio is low, raising a caution for evaluating the predictability of Ningaloo Niño and its environmental consequences.
Abstract
A high-resolution (3–8 km) regional oceanic general circulation model is utilized to understand the sea surface temperature (SST) variability of Ningaloo Niño in the southeast Indian Ocean (SEIO). The model reproduces eight Ningaloo Niño events with good fidelity and reveals complicated spatial structures. Mesoscale noises are seen in the warming signature and confirmed by satellite microwave SST data. Model experiments are carried out to quantitatively evaluate the effects of key processes. The results reveal that the surface turbulent heat flux (primarily latent heat flux) is the most important process (contribution > 68%) in driving and damping the SST warming for most events, while the roles of the Indonesian Throughflow (~15%) and local wind forcing are secondary. A suitable air temperature warming is essential to reproducing the reduced surface latent heat loss during the growth of SST warming (~66%), whereas the effect of the increased air humidity is negligibly small (1%). The established SST warming in the mature phase causes increased latent heat loss that initiates the decay of warming. A 20-member ensemble simulation is performed for the 2010/11 super Ningaloo Niño, which confirms the strong influence of ocean internal processes in the redistribution of SST warming signatures. Oceanic eddies can dramatically modulate the magnitudes of local SST warming, particularly in offshore areas where the “signal-to-noise” ratio is low, raising a caution for evaluating the predictability of Ningaloo Niño and its environmental consequences.
Abstract
Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.
Abstract
Multi-time-scale variabilities of the Indian Ocean (IO) temperature over 0–700 m are revisited from the perspective of vertical structure. Analysis of historical data for 1955–2018 identifies two dominant types of vertical structures that account for respectively 70.5% and 21.2% of the total variance on interannual-to-interdecadal time scales with the linear trend and seasonal cycle removed. The leading type manifests as vertically coherent warming/cooling with the maximal amplitude at ~100 m and exhibits evident interdecadal variations. The second type shows a vertical dipole structure between the surface (0–60 m) and subsurface (60–400 m) layers and interannual-to-decadal fluctuations. Ocean model experiments were performed to gain insights into underlying processes. The vertically coherent, basinwide warming/cooling of the IO on an interdecadal time scale is caused by changes of the Indonesian Throughflow (ITF) controlled by Pacific climate and anomalous surface heat fluxes partly originating from external forcing. Enhanced changes in the subtropical southern IO arise from positive air–sea feedback among sea surface temperature, winds, turbulent heat flux, cloud cover, and shortwave radiation. Regarding dipole-type variability, the basinwide surface warming is induced by surface heat flux forcing, and the subsurface cooling occurs only in the eastern IO. The cooling in the southeast IO is generated by the weakened ITF, whereas that in the northeast IO is caused by equatorial easterly winds through upwelling oceanic waves. Both El Niño–Southern Oscillation (ENSO) and IO dipole (IOD) events are favorable for the generation of such vertical dipole anomalies.