Search Results

You are looking at 21 - 26 of 26 items for

  • Author or Editor: Gerard H. Roe x
  • Refine by Access: All Content x
Clear All Modify Search
Nicholas Siler
,
Adriana Bailey
,
Gerard H. Roe
,
Christo Buizert
,
Bradley Markle
, and
David Noone

Abstract

The stable isotope ratios of oxygen and hydrogen in polar ice cores are known to record environmental change, and they have been widely used as a paleothermometer. Although it is known to be a simplification, the relationship is often explained by invoking a single condensation pathway with progressive distillation to the temperature at the location of the ice core. In reality, the physical factors are complicated, and recent studies have identified robust aspects of the hydrologic cycle’s response to climate change that could influence the isotope–temperature relationship. In this study, we introduce a new zonal-mean isotope model derived from radiative transfer theory and incorporate it into a recently developed moist energy balance climate model (MEBM), thus providing an internally consistent representation of the physical coupling between temperature, hydrology, and isotope ratios in the zonal-mean climate. The isotope model reproduces the observed pattern of meteoric δ 18O in the modern climate and allows us to evaluate the relative importance of different processes for the temporal correlation between δ 18O and temperature at high latitudes. We find that the positive temporal correlation in polar ice cores is predominantly a result of suppressed high-latitude evaporation with cooling, rather than local temperature changes. The same mechanism also explains the difference in the strength of the isotope–temperature relationship between Greenland and Antarctica.

Full access
Tyler Cox
,
Kyle C. Armour
,
Gerard H. Roe
,
Aaron Donohoe
, and
Dargan M. W. Frierson

Abstract

Atmospheric heat transport is an important piece of our climate system, yet we lack a complete theory for its magnitude or changes. Atmospheric dynamics and radiation play different roles in controlling the total atmospheric heat transport (AHT) and its partitioning into components associated with eddies and mean meridional circulations. This work focuses on two specific controls: a radiative one, namely atmospheric radiative temperature tendencies, and a dynamic one, the planetary rotation rate. We use an idealized gray radiation model to employ a novel framework to lock the radiative temperature tendency and total AHT to climatological values, even while the rotation rate is varied. This setup allows for a systematic study of the effects of radiative tendency and rotation rate on AHT. We find that rotation rate controls the latitudinal extent of the Hadley cell and the heat transport efficiency of eddies. Both the rotation rate and radiative tendency influence the strength of the Hadley cell and the strength of equator–pole energy differences that are important for AHT by eddies. These two controls do not always operate independently and can reinforce or dampen each other. In addition, we examine how individual AHT components, which vary with latitude, sum to a total AHT that varies smoothly with latitude. At slow rotation rates the mean meridional circulation is most important in ensuring total AHT varies smoothly with latitude, while eddies are most important at rotation rates similar to, and faster than, those of Earth.

Full access
Tyler Cox
,
Aaron Donohoe
,
Gerard H. Roe
,
Kyle C. Armour
, and
Dargan M. W. Frierson

Abstract

Total poleward atmospheric heat transport (AHT) is similar in both magnitude and latitudinal structure between the Northern and Southern Hemispheres. These similarities occur despite more major mountain ranges in the Northern Hemisphere, which help create substantial stationary eddy AHT that is largely absent in the Southern Hemisphere. However, this hemispheric difference in stationary eddy AHT is compensated by hemispheric differences in other dynamic components of AHT so that total AHT is similar between hemispheres. To understand how AHT compensation occurs, we add midlatitude mountain ranges in two different general circulation models that are otherwise configured as aquaplanets. Even when midlatitude mountains are introduced, total AHT is nearly invariant. We explore the near invariance of total AHT in response to orography through dynamic, energetic, and diffusive perspectives. Dynamically, orographically induced changes to stationary eddy AHT are compensated by changes in both transient eddy and mean meridional circulation AHT. This creates an AHT system with three interconnected components that resist large changes to total AHT. Energetically, the total AHT can only change if the top-of-the-atmosphere net radiation changes at the equator-to-pole scale. Midlatitude orography does not create large-enough changes in the equator-to-pole temperature gradient to alter outgoing longwave radiation enough to substantially change total AHT. In the zonal mean, changes to absorbed shortwave radiation also often compensate for changes in outgoing longwave radiation. Diffusively, the atmosphere smooths anomalies in temperature and humidity created by the addition of midlatitude orography, such that total AHT is relatively invariant.

Significance Statement

The purpose of this study is to better understand how orography influences heat transport in the atmosphere. Enhancing our understanding of how atmospheric heat transport works is important, as heat transport helps moderate Earth’s surface temperatures and influences precipitation patterns. We find that the total amount of atmospheric heat transport does not change in the presence of mountains in the midlatitudes. Different pieces of the heat transport change, but they change in compensatory ways, such that the total heat transport remains roughly constant.

Full access
David B. Bonan
,
Nicholas Siler
,
Gerard H. Roe
, and
Kyle C. Armour

Abstract

The response of zonal-mean precipitation minus evaporation (PE) to global warming is investigated using a moist energy balance model (MEBM) with a simple Hadley cell parameterization. The MEBM accurately emulates zonal-mean PE change simulated by a suite of global climate models (GCMs) under greenhouse gas forcing. The MEBM also accounts for most of the intermodel differences in GCM PE change and better emulates GCM PE change when compared to the “wet-gets-wetter, dry-gets-drier” thermodynamic mechanism. The intermodel spread in PE change is attributed to intermodel differences in radiative feedbacks, which account for 60%–70% of the intermodel variance, with smaller contributions from radiative forcing and ocean heat uptake. Isolating the intermodel spread of feedbacks to specific regions shows that tropical feedbacks are the primary source of intermodel spread in zonal-mean PE change. The ability of the MEBM to emulate GCM PE change is further investigated using idealized feedback patterns. A less negative and narrowly peaked feedback pattern near the equator results in more atmospheric heating, which strengthens the Hadley cell circulation in the deep tropics through an enhanced poleward heat flux. This pattern also increases gross moist stability, which weakens the subtropical Hadley cell circulation. These two processes in unison increase PE in the deep tropics, decrease PE in the subtropics, and narrow the intertropical convergence zone. Additionally, a feedback pattern that produces polar-amplified warming partially reduces the poleward moisture flux by weakening the meridional temperature gradient. It is shown that changes to the Hadley cell circulation and the poleward moisture flux are crucial for understanding the pattern of GCM PE change under warming.

Significance Statement

Changes to the hydrological cycle over the twenty-first century are predicted to impact ecosystems and socioeconomic activities throughout the world. While it is broadly expected that dry regions will get drier and wet regions will get wetter, the magnitude and spatial structure of these changes remains uncertain. In this study, we use an idealized climate model, which assumes how energy is transported in the atmosphere, to understand the processes setting the pattern of precipitation and evaporation under global warming. We first use the idealized climate model to explain why comprehensive climate models predict different changes to precipitation and evaporation across a range of latitudes. We show this arises primarily from climate feedbacks, which act to amplify or dampen the amount of warming. Ocean heat uptake and radiative forcing play secondary roles but can account for a significant amount of the uncertainty in regions where ocean circulation influences the rate of warming. We further show that uncertainty in tropical feedbacks (mainly from clouds) affects changes to the hydrological cycle across a range of latitudes. We then show how the pattern of climate feedbacks affects how the patterns of precipitation and evaporation respond to climate change through a set of idealized experiments. These results show how the pattern of climate feedbacks impacts tropical hydrological changes by affecting the strength of the Hadley circulation and polar hydrological changes by affecting the transport of moisture to the high latitudes.

Restricted access
Aaron Donohoe
,
Kyle C. Armour
,
Gerard H. Roe
,
David S. Battisti
, and
Lily Hahn

Abstract

Meridional heat transport (MHT) is analyzed in ensembles of coupled climate models simulating climate states ranging from the Last Glacial Maximum (LGM) to quadrupled CO2. MHT is partitioned here into atmospheric (AHT) and implied oceanic (OHT) heat transports. In turn, AHT is partitioned into dry and moist energy transport by the meridional overturning circulation (MOC), transient eddy energy transport (TE), and stationary eddy energy transport (SE) using only monthly averaged model output that is typically archived. In all climate models examined, the maximum total MHT (AHT + OHT) is nearly climate-state invariant, except for a modest (4%, 0.3 PW) enhancement of MHT in the Northern Hemisphere (NH) during the LGM. However, the partitioning of MHT depends markedly on the climate state, and the changes in partitioning differ considerably among different climate models. In response to CO2 quadrupling, poleward implied OHT decreases, while AHT increases by a nearly compensating amount. The increase in annual-mean AHT is a smooth function of latitude but is due to a spatially inhomogeneous blend of changes in SE and TE that vary by season. During the LGM, the increase in wintertime SE transport in the NH midlatitudes exceeds the decrease in TE resulting in enhanced total AHT. Total AHT changes in the Southern Hemisphere (SH) are not significant. These results suggest that the net top-of-atmosphere radiative constraints on total MHT are relatively invariant to climate forcing due to nearly compensating changes in absorbed solar radiation and outgoing longwave radiation. However, the partitioning of MHT depends on detailed regional and seasonal factors.

Free access
Tyler Cox
,
Aaron Donohoe
,
Kyle C. Armour
,
Dargan M. W. Frierson
, and
Gerard H. Roe

Abstract

We investigate the linear trends in meridional atmospheric heat transport (AHT) since 1980 in atmospheric reanalysis datasets, coupled climate models, and atmosphere-only climate models forced with historical sea surface temperatures. Trends in AHT are decomposed into contributions from three components of circulation: (i) transient eddies, (ii) stationary eddies, and (iii) the mean meridional circulation. All reanalyses and models agree on the pattern of AHT trends in the Southern Ocean, providing confidence in the trends in this region. There are robust increases in transient-eddy AHT magnitude in the Southern Ocean in the reanalyses, which are well replicated by the atmosphere-only models, while coupled models show smaller magnitude trends. This suggests that the pattern of sea surface temperature trends contributes to the transient-eddy AHT trends in this region. In the tropics, we find large differences between mean-meridional circulation AHT trends in models and the reanalyses, which we connect to discrepancies in tropical precipitation trends. In the Northern Hemisphere, we find less evidence of large-scale trends and more uncertainty, but note several regions with mismatches between models and the reanalyses that have dynamical explanations. Throughout this work we find strong compensation between the different components of AHT, most notably in the Southern Ocean where transient-eddy AHT trends are well compensated by trends in the mean-meridional circulation AHT, resulting in relatively small total AHT trends. This highlights the importance of considering AHT changes holistically, rather than each AHT component individually.

Restricted access