Search Results

You are looking at 21 - 26 of 26 items for :

  • Author or Editor: Ian Young x
  • Refine by Access: All Content x
Clear All Modify Search
Jose Henrique G. M. Alves
,
Michael L. Banner
, and
Ian R. Young

Abstract

The time-honored topic of fully developed wind seas pioneered by Pierson and Moskowitz is revisited to review the asymptotic evolution limits of integral spectral parameters used by the modeling community in the validation of wind-wave models. Discrepancies are investigated between benchmark asymptotic limits obtained by scaling integral spectral parameters using alternative wind speeds. Using state-of-the-art wind and wave modeling technology, uncertainties in the Pierson–Moskowitz limits due to inhomogeneities in the wind fields and contamination of the original data by crossing seas and swells are also investigated. The resulting reanalyzed database is used to investigate the optimal scaling wind parameter and to refine the levels of the full-development asymptotes of nondimensional integral wave spectral parameters used by the wind-wave modeling community. The results are also discussed in relation to recent advances in quantifying wave-breaking probability of wind seas. The results show that the parameterization of integral spectral parameters and the scaling of nondimensional asymptotes as a function of U 10 yields relations consistent with similarity theory. On the other hand, expressing integral spectral parameters and scaling nondimensional asymptotes as a function of u∗ or alternative proposed scaling wind speeds yields relations that do not conform to similarity requirements as convincingly. The reanalyzed spectra are used to investigate parameter values and shapes of analytical functions representing fully developed spectra. These results support an analytical form with a spectral tail proportional to f −4.

Full access
Qingxiang Liu
,
W. Erick Rogers
,
Alexander V. Babanin
,
Ian R. Young
,
Leonel Romero
,
Stefan Zieger
,
Fangli Qiao
, and
Changlong Guan

Abstract

The observation-based source terms available in the third-generation wave model WAVEWATCH III (i.e., the ST6 package for parameterizations of wind input, wave breaking, and swell dissipation terms) are recalibrated and verified against a series of academic and realistic simulations, including the fetch/duration-limited test, a Lake Michigan hindcast, and a 1-yr global hindcast. The updated ST6 not only performs well in predicting commonly used bulk wave parameters (e.g., significant wave height and wave period) but also yields a clearly improved estimation of high-frequency energy level (in terms of saturation spectrum and mean square slope). In the duration-limited test, we investigate the modeled wave spectrum in a detailed way by introducing spectral metrics for the tail and the peak of the omnidirectional wave spectrum and for the directionality of the two-dimensional frequency–direction spectrum. The omnidirectional frequency spectrum E(f) from the recalibrated ST6 shows a clear transition behavior from a power law of approximately f −4 to a power law of about f −5, comparable to previous field studies. Different solvers for nonlinear wave interactions are applied with ST6, including the Discrete Interaction Approximation (DIA), the more expensive Generalized Multiple DIA (GMD), and the very expensive exact solutions [using the Webb–Resio–Tracy method (WRT)]. The GMD-simulated E(f) is in excellent agreement with that from WRT. Nonetheless, we find the peak of E(f) modeled by the GMD and WRT appears too narrow. It is also shown that in the 1-yr global hindcast, the DIA-based model overestimates the low-frequency wave energy (wave period T > 16 s) by 90%. Such model errors are reduced significantly by the GMD to ~20%.

Full access
Diana Greenslade
,
Mark Hemer
,
Alex Babanin
,
Ryan Lowe
,
Ian Turner
,
Hannah Power
,
Ian Young
,
Daniel Ierodiaconou
,
Greg Hibbert
,
Greg Williams
,
Saima Aijaz
,
João Albuquerque
,
Stewart Allen
,
Michael Banner
,
Paul Branson
,
Steve Buchan
,
Andrew Burton
,
John Bye
,
Nick Cartwright
,
Amin Chabchoub
,
Frank Colberg
,
Stephanie Contardo
,
Francois Dufois
,
Craig Earl-Spurr
,
David Farr
,
Ian Goodwin
,
Jim Gunson
,
Jeff Hansen
,
David Hanslow
,
Mitchell Harley
,
Yasha Hetzel
,
Ron Hoeke
,
Nicole Jones
,
Michael Kinsela
,
Qingxiang Liu
,
Oleg Makarynskyy
,
Hayden Marcollo
,
Said Mazaheri
,
Jason McConochie
,
Grant Millar
,
Tim Moltmann
,
Neal Moodie
,
Joao Morim
,
Russel Morison
,
Jana Orszaghova
,
Charitha Pattiaratchi
,
Andrew Pomeroy
,
Roger Proctor
,
David Provis
,
Ruth Reef
,
Dirk Rijnsdorp
,
Martin Rutherford
,
Eric Schulz
,
Jake Shayer
,
Kristen Splinter
,
Craig Steinberg
,
Darrell Strauss
,
Greg Stuart
,
Graham Symonds
,
Karina Tarbath
,
Daniel Taylor
,
James Taylor
,
Darshani Thotagamuwage
,
Alessandro Toffoli
,
Alireza Valizadeh
,
Jonathan van Hazel
,
Guilherme Vieira da Silva
,
Moritz Wandres
,
Colin Whittaker
,
David Williams
,
Gundula Winter
,
Jiangtao Xu
,
Aihong Zhong
, and
Stefan Zieger
Full access
Diana Greenslade
,
Mark Hemer
,
Alex Babanin
,
Ryan Lowe
,
Ian Turner
,
Hannah Power
,
Ian Young
,
Daniel Ierodiaconou
,
Greg Hibbert
,
Greg Williams
,
Saima Aijaz
,
João Albuquerque
,
Stewart Allen
,
Michael Banner
,
Paul Branson
,
Steve Buchan
,
Andrew Burton
,
John Bye
,
Nick Cartwright
,
Amin Chabchoub
,
Frank Colberg
,
Stephanie Contardo
,
Francois Dufois
,
Craig Earl-Spurr
,
David Farr
,
Ian Goodwin
,
Jim Gunson
,
Jeff Hansen
,
David Hanslow
,
Mitchell Harley
,
Yasha Hetzel
,
Ron Hoeke
,
Nicole Jones
,
Michael Kinsela
,
Qingxiang Liu
,
Oleg Makarynskyy
,
Hayden Marcollo
,
Said Mazaheri
,
Jason McConochie
,
Grant Millar
,
Tim Moltmann
,
Neal Moodie
,
Joao Morim
,
Russel Morison
,
Jana Orszaghova
,
Charitha Pattiaratchi
,
Andrew Pomeroy
,
Roger Proctor
,
David Provis
,
Ruth Reef
,
Dirk Rijnsdorp
,
Martin Rutherford
,
Eric Schulz
,
Jake Shayer
,
Kristen Splinter
,
Craig Steinberg
,
Darrell Strauss
,
Greg Stuart
,
Graham Symonds
,
Karina Tarbath
,
Daniel Taylor
,
James Taylor
,
Darshani Thotagamuwage
,
Alessandro Toffoli
,
Alireza Valizadeh
,
Jonathan van Hazel
,
Guilherme Vieira da Silva
,
Moritz Wandres
,
Colin Whittaker
,
David Williams
,
Gundula Winter
,
Jiangtao Xu
,
Aihong Zhong
, and
Stefan Zieger

Abstract

The Australian marine research, industry, and stakeholder community has recently undertaken an extensive collaborative process to identify the highest national priorities for wind-waves research. This was undertaken under the auspices of the Forum for Operational Oceanography Surface Waves Working Group. The main steps in the process were first, soliciting possible research questions from the community via an online survey; second, reviewing the questions at a face-to-face workshop; and third, online ranking of the research questions by individuals. This process resulted in 15 identified priorities, covering research activities and the development of infrastructure. The top five priorities are 1) enhanced and updated nearshore and coastal bathymetry; 2) improved understanding of extreme sea states; 3) maintain and enhance the in situ buoy network; 4) improved data access and sharing; and 5) ensemble and probabilistic wave modeling and forecasting. In this paper, each of the 15 priorities is discussed in detail, providing insight into why each priority is important, and the current state of the art, both nationally and internationally, where relevant. While this process has been driven by Australian needs, it is likely that the results will be relevant to other marine-focused nations.

Free access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael DeGrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit de Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig McNeil
,
James B. McQuaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

As part of the U.K. contribution to the international Surface Ocean-Lower Atmosphere Study, a series of three related projects—DOGEE, SEASAW, and HiWASE—undertook experimental studies of the processes controlling the physical exchange of gases and sea spray aerosol at the sea surface. The studies share a common goal: to reduce the high degree of uncertainty in current parameterization schemes. The wide variety of measurements made during the studies, which incorporated tracer and surfactant release experiments, included direct eddy correlation fluxes, detailed wave spectra, wind history, photographic retrievals of whitecap fraction, aerosolsize spectra and composition, surfactant concentration, and bubble populations in the ocean mixed layer. Measurements were made during three cruises in the northeast Atlantic on the RRS Discovery during 2006 and 2007; a fourth campaign has been making continuous measurements on the Norwegian weather ship Polarfront since September 2006. This paper provides an overview of the three projects and some of the highlights of the measurement campaigns.

Full access
Ian M. Brooks
,
Margaret J. Yelland
,
Robert C. Upstill-Goddard
,
Philip D. Nightingale
,
Steve Archer
,
Eric d'Asaro
,
Rachael Beale
,
Cory Beatty
,
Byron Blomquist
,
A. Anthony Bloom
,
Barbara J. Brooks
,
John Cluderay
,
David Coles
,
John Dacey
,
Michael Degrandpre
,
Jo Dixon
,
William M. Drennan
,
Joseph Gabriele
,
Laura Goldson
,
Nick Hardman-Mountford
,
Martin K. Hill
,
Matt Horn
,
Ping-Chang Hsueh
,
Barry Huebert
,
Gerrit De Leeuw
,
Timothy G. Leighton
,
Malcolm Liddicoat
,
Justin J. N. Lingard
,
Craig Mcneil
,
James B. Mcquaid
,
Ben I. Moat
,
Gerald Moore
,
Craig Neill
,
Sarah J. Norris
,
Simon O'Doherty
,
Robin W. Pascal
,
John Prytherch
,
Mike Rebozo
,
Erik Sahlee
,
Matt Salter
,
Ute Schuster
,
Ingunn Skjelvan
,
Hans Slagter
,
Michael H. Smith
,
Paul D. Smith
,
Meric Srokosz
,
John A. Stephens
,
Peter K. Taylor
,
Maciej Telszewski
,
Roisin Walsh
,
Brian Ward
,
David K. Woolf
,
Dickon Young
, and
Henk Zemmelink

Abstract

No Abstract available.

Full access