Search Results
You are looking at 21 - 30 of 47 items for
- Author or Editor: John T. Allen x
- Refine by Access: All Content x
Abstract
The tornado outbreak of 21–23 January 2017 caused 20 fatalities, more than 200 injuries, and over a billion dollars in damage in the Southeast United States. The event occurred concurrently with a record-breaking warm Gulf of Mexico (GoM) basin. This article explores the influence that warm GoM sea surface temperatures (SSTs) had on the tornado outbreak. Backward trajectory analysis, combined with a Lagrangian-based moisture-attribution algorithm, reveals that the tornado outbreak’s moisture predominantly originated from the southeast GoM and the northwest Caribbean Sea. We used the WRF Model to generate a control simulation of the event and explore the response to perturbed SSTs. With the aid of a tornadic storm proxy derived from updraft helicity, we show that the 21–23 January 2017 tornado outbreak exhibits sensitivity to upstream SSTs during the first day of the event. Warmer SSTs across remote moisture sources and adjacent waters increase tornado frequency, in contrast to cooler SSTs, which reduce tornado activity. Upstream SST sensitivity is reduced once convection is ongoing and modifying local moisture and instability availability. Our results highlight the importance of air–sea interactions before airmass advection toward the continental United States. The complex and nonlinear nature of the relationship between upstream SSTs and local precursor environments is also discussed.
Abstract
The tornado outbreak of 21–23 January 2017 caused 20 fatalities, more than 200 injuries, and over a billion dollars in damage in the Southeast United States. The event occurred concurrently with a record-breaking warm Gulf of Mexico (GoM) basin. This article explores the influence that warm GoM sea surface temperatures (SSTs) had on the tornado outbreak. Backward trajectory analysis, combined with a Lagrangian-based moisture-attribution algorithm, reveals that the tornado outbreak’s moisture predominantly originated from the southeast GoM and the northwest Caribbean Sea. We used the WRF Model to generate a control simulation of the event and explore the response to perturbed SSTs. With the aid of a tornadic storm proxy derived from updraft helicity, we show that the 21–23 January 2017 tornado outbreak exhibits sensitivity to upstream SSTs during the first day of the event. Warmer SSTs across remote moisture sources and adjacent waters increase tornado frequency, in contrast to cooler SSTs, which reduce tornado activity. Upstream SST sensitivity is reduced once convection is ongoing and modifying local moisture and instability availability. Our results highlight the importance of air–sea interactions before airmass advection toward the continental United States. The complex and nonlinear nature of the relationship between upstream SSTs and local precursor environments is also discussed.
Abstract
Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.
Abstract
Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.
Abstract
Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient convective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this understanding comes only from examining the mean characteristics of large hail environments. How much variety exists within the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study, we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERA5 modeled proximity soundings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth depends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is important in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predictable by the depth of buoyancy, rather than CAPE itself.
Abstract
Environments associated with severe hailstorms, compared to those of tornadoes, are often less apparent to forecasters. Understanding has evolved considerably in recent years; namely, that weak low-level shear and sufficient convective available potential energy (CAPE) above the freezing level is most favorable for large hail. However, this understanding comes only from examining the mean characteristics of large hail environments. How much variety exists within the kinematic and thermodynamic environments of large hail? Is there a balance between shear and CAPE analogous to that noted with tornadoes? We address these questions to move toward a more complete conceptual model. In this study, we investigate the environments of 92 323 hail reports (both severe and nonsevere) using ERA5 modeled proximity soundings. By employing a self-organizing map algorithm and subsetting these environments by a multitude of characteristics, we find that the conditions leading to large hail are highly variable, but three primary patterns emerge. First, hail growth depends on a favorable balance of CAPE, wind shear, and relative humidity, such that accounting for entrainment is important in parameter-based hail prediction. Second, hail growth is thwarted by strong low-level storm-relative winds, unless CAPE below the hail growth zone is weak. Finally, the maximum hail size possible in a given environment may be predictable by the depth of buoyancy, rather than CAPE itself.
Abstract
A study of mesoscale subduction at the Antarctic Polar Front (PF) is conducted by use of hydrographic data from a high-resolution, quasi-synoptic survey of the front. The geostrophic velocity and isopycnal potential vorticity (PV) fields are computed, and the ageostrophic flow diagnosed from the semigeostrophic omega equation. It is found that the ageostrophic circulation induced by baroclinic instability counteracts the frontogenesis and frontolysis effected by the confluence and difluence, respectively, of the geostrophic velocity field. Though the sense of the ageostrophic circulation is reversed repeatedly along the front, the existence of PV gradients along isopycnals leads to a net cross-front “bolus” transport. In response to a reversal of this gradient with depth (a necessary condition for the onset of baroclinic instability), the bolus transport is northward at the protruding temperature minimum layer that characterizes the PF, and southward above. This net cross-front overturning circulation acts to flatten the isopycnals of the front and results in a subduction of the temperature minimum layer as it progresses northward along isopycnals. Consistently, a net baroclinic conversion rate of approximately 1 cm2 s−2 d−1, corresponding to a net subduction rate of O(20 m yr−1), is calculated in the survey area. The similarity between the PV field of the PF and other Southern Ocean fronts suggests that the authors' results may also be applicable there. This has profound implications for the understanding of the zonation of the Antarctic Circumpolar Current.
Abstract
A study of mesoscale subduction at the Antarctic Polar Front (PF) is conducted by use of hydrographic data from a high-resolution, quasi-synoptic survey of the front. The geostrophic velocity and isopycnal potential vorticity (PV) fields are computed, and the ageostrophic flow diagnosed from the semigeostrophic omega equation. It is found that the ageostrophic circulation induced by baroclinic instability counteracts the frontogenesis and frontolysis effected by the confluence and difluence, respectively, of the geostrophic velocity field. Though the sense of the ageostrophic circulation is reversed repeatedly along the front, the existence of PV gradients along isopycnals leads to a net cross-front “bolus” transport. In response to a reversal of this gradient with depth (a necessary condition for the onset of baroclinic instability), the bolus transport is northward at the protruding temperature minimum layer that characterizes the PF, and southward above. This net cross-front overturning circulation acts to flatten the isopycnals of the front and results in a subduction of the temperature minimum layer as it progresses northward along isopycnals. Consistently, a net baroclinic conversion rate of approximately 1 cm2 s−2 d−1, corresponding to a net subduction rate of O(20 m yr−1), is calculated in the survey area. The similarity between the PV field of the PF and other Southern Ocean fronts suggests that the authors' results may also be applicable there. This has profound implications for the understanding of the zonation of the Antarctic Circumpolar Current.
Abstract
Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.
Abstract
Long-term trends in the historical frequency of environments supportive of atmospheric convection are unclear, and only partially follow the expectations of a warming climate. This uncertainty is driven by the lack of unequivocal changes in the ingredients for severe thunderstorms (i.e., conditional instability, sufficient low-level moisture, initiation mechanism, and vertical wind shear). ERA5 hybrid-sigma data allow for superior characterization of thermodynamic parameters including convective inhibition, which is very sensitive to the number of levels in the lower troposphere. Using hourly data we demonstrate that long-term decreases in instability and stronger convective inhibition cause a decline in the frequency of thunderstorm environments over the southern United States, particularly during summer. Conversely, increasingly favorable conditions for tornadoes are observed during winter across the Southeast. Over Europe, a pronounced multidecadal increase in low-level moisture has provided positive trends in thunderstorm environments over the south, central, and north, with decreases over the east due to strengthening convective inhibition. Modest increases in vertical wind shear and storm-relative helicity have been observed over northwestern Europe and the Great Plains. Both continents exhibit negative trends in the fraction of environments with likely convective initiation. This suggests that despite increasing instability, thunderstorms in a warming climate may be less likely to develop due to stronger convective inhibition and lower relative humidity. Decreases in convective initiation and resulting precipitation may have long-term implications for agriculture, water availability, and the frequency of severe weather such as large hail and tornadoes. Our results also indicate that trends observed over the United States cannot be assumed to be representative of other continents.
Abstract
The 31 May 2013 El Reno, Oklahoma, tornado is used to demonstrate how a video imagery database crowdsourced from storm chasers can be time-corrected and georeferenced to inform severe storm research. The tornado’s exceptional magnitude (∼4.3-km diameter and ∼135 m s−1 winds) and the wealth of observational data highlight this storm as a subject for scientific investigation. The storm was documented by mobile research and fixed-base radars, lightning detection networks, and poststorm damage surveys. In addition, more than 250 individuals and groups of storm chasers navigating the tornado captured imagery, constituting a largely untapped resource for scientific investigation.
The El Reno Survey was created to crowdsource imagery from storm chasers and to compile submitted materials in a quality-controlled, open-access research database. Solicitations to storm chasers via social media and e-mail yielded 93 registrants, each contributing still and/or video imagery and metadata. Lightning flash interval is used for precise time calibration of contributed video imagery; when combined with georeferencing from open-source geographical information software, this enables detailed mapping of storm phenomena. A representative set of examples is presented to illustrate how this standardized database and a web-based visualization tool can inform research on tornadoes, lightning, and hail. The project database offers the largest archive of visual material compiled for a single storm event, accessible to the scientific community through a registration process. This approach also offers a new model for poststorm data collection, with instructional materials created to facilitate replication for research into both past and future storm events.
Abstract
The 31 May 2013 El Reno, Oklahoma, tornado is used to demonstrate how a video imagery database crowdsourced from storm chasers can be time-corrected and georeferenced to inform severe storm research. The tornado’s exceptional magnitude (∼4.3-km diameter and ∼135 m s−1 winds) and the wealth of observational data highlight this storm as a subject for scientific investigation. The storm was documented by mobile research and fixed-base radars, lightning detection networks, and poststorm damage surveys. In addition, more than 250 individuals and groups of storm chasers navigating the tornado captured imagery, constituting a largely untapped resource for scientific investigation.
The El Reno Survey was created to crowdsource imagery from storm chasers and to compile submitted materials in a quality-controlled, open-access research database. Solicitations to storm chasers via social media and e-mail yielded 93 registrants, each contributing still and/or video imagery and metadata. Lightning flash interval is used for precise time calibration of contributed video imagery; when combined with georeferencing from open-source geographical information software, this enables detailed mapping of storm phenomena. A representative set of examples is presented to illustrate how this standardized database and a web-based visualization tool can inform research on tornadoes, lightning, and hail. The project database offers the largest archive of visual material compiled for a single storm event, accessible to the scientific community through a registration process. This approach also offers a new model for poststorm data collection, with instructional materials created to facilitate replication for research into both past and future storm events.
Abstract
In previous work the authors demonstrated an empirical relation, in the form of an index, between U.S. monthly tornado activity and monthly averaged environmental parameters. Here a detailed comparison is made between the index and reported tornado activity. The index is a function of two environmental parameters taken from the North American Regional Reanalysis: convective precipitation (cPrcp) and storm relative helicity (SRH). Additional environmental parameters are considered for inclusion in the index, among them convective available potential energy, but their inclusion does not significantly improve the overall climatological performance of the index. The aggregate climatological dependence of reported monthly U.S. tornado numbers on cPrcp and SRH is well described by the index, although it fails to capture nonsupercell and cool season tornadoes. The contributions of the two environmental parameters to the index annual cycle and spatial distribution are examined with the seasonality of cPrcp (maximum during summer) relative to SRH (maximum in winter) accounting for the index peak value in May. The spatial distribution of SRH establishes the central U.S. “tornado alley” of the index, while the spatial distribution of cPrcp enhances index values in the South and Southeast and suppresses them west of the Rockies and over elevation. At the scale of the NOAA climate regions, the largest deficiency of the index climatology occurs over the central region where the index peak in spring is too low and where the late summer drop-off in the reported number of tornadoes is poorly captured. This index deficiency is related to its sensitivity to SRH, and increasing the index sensitivity to SRH improves the representation of the annual cycle in this region. The ability of the index to represent the interannual variability of the monthly number of U.S. tornadoes can be ascribed during most times of the year to interannual variations of cPrcp rather than of SRH. However, both factors are important during the peak spring period. The index shows some skill in representing the interannual variability of monthly tornado numbers at the scale of NOAA climate regions.
Abstract
In previous work the authors demonstrated an empirical relation, in the form of an index, between U.S. monthly tornado activity and monthly averaged environmental parameters. Here a detailed comparison is made between the index and reported tornado activity. The index is a function of two environmental parameters taken from the North American Regional Reanalysis: convective precipitation (cPrcp) and storm relative helicity (SRH). Additional environmental parameters are considered for inclusion in the index, among them convective available potential energy, but their inclusion does not significantly improve the overall climatological performance of the index. The aggregate climatological dependence of reported monthly U.S. tornado numbers on cPrcp and SRH is well described by the index, although it fails to capture nonsupercell and cool season tornadoes. The contributions of the two environmental parameters to the index annual cycle and spatial distribution are examined with the seasonality of cPrcp (maximum during summer) relative to SRH (maximum in winter) accounting for the index peak value in May. The spatial distribution of SRH establishes the central U.S. “tornado alley” of the index, while the spatial distribution of cPrcp enhances index values in the South and Southeast and suppresses them west of the Rockies and over elevation. At the scale of the NOAA climate regions, the largest deficiency of the index climatology occurs over the central region where the index peak in spring is too low and where the late summer drop-off in the reported number of tornadoes is poorly captured. This index deficiency is related to its sensitivity to SRH, and increasing the index sensitivity to SRH improves the representation of the annual cycle in this region. The ability of the index to represent the interannual variability of the monthly number of U.S. tornadoes can be ascribed during most times of the year to interannual variations of cPrcp rather than of SRH. However, both factors are important during the peak spring period. The index shows some skill in representing the interannual variability of monthly tornado numbers at the scale of NOAA climate regions.