Search Results

You are looking at 21 - 23 of 23 items for :

  • Author or Editor: Joseph Santanello x
  • Journal of Hydrometeorology x
  • Refine by Access: All Content x
Clear All Modify Search
Peter J. Shellito, Sujay V. Kumar, Joseph A. Santanello Jr., Patricia Lawston-Parker, John D. Bolten, Michael H. Cosh, David D. Bosch, Chandra D. Holifield Collins, Stan Livingston, John Prueger, Mark Seyfried, and Patrick J. Starks


The utility of hydrologic land surface models (LSMs) can be enhanced by using information from observational platforms, but mismatches between the two are common. This study assesses the degree to which model agreement with observations is affected by two mechanisms in particular: 1) physical incongruities between the support volumes being characterized and 2) inadequate or inconsistent parameterizations of physical processes. The Noah and Noah-MP LSMs by default characterize surface soil moisture (SSM) in the top 10 cm of the soil column. This depth is notably different from the 5-cm (or less) sensing depth of L-band radiometers such as NASA’s Soil Moisture Active Passive (SMAP) satellite mission. These depth inconsistencies are examined by using thinner model layers in the Noah and Noah-MP LSMs and comparing resultant simulations to in situ and SMAP soil moisture. In addition, a forward radiative transfer model (RTM) is used to facilitate direct comparisons of LSM-based and SMAP-based L-band Tb retrievals. Agreement between models and observations is quantified using Kolmogorov–Smirnov distance values, calculated from empirical cumulative distribution functions of SSM and Tb time series. Results show that agreement of SSM and Tb with observations depends primarily on systematic biases, and the sign of those biases depends on the particular subspace being analyzed (SSM or Tb). This study concludes that the role of increased soil layer discretization on simulated soil moisture and Tb is secondary to the influence of component parameterizations, the effects of which dominate systematic differences with observations.

Free access
Paul A. Dirmeyer, Jiexia Wu, Holly E. Norton, Wouter A. Dorigo, Steven M. Quiring, Trenton W. Ford, Joseph A. Santanello Jr., Michael G. Bosilovich, Michael B. Ek, Randal D. Koster, Gianpaolo Balsamo, and David M. Lawrence


Four land surface models in uncoupled and coupled configurations are compared to observations of daily soil moisture from 19 networks in the conterminous United States to determine the viability of such comparisons and explore the characteristics of model and observational data. First, observations are analyzed for error characteristics and representation of spatial and temporal variability. Some networks have multiple stations within an area comparable to model grid boxes; for those it is found that aggregation of stations before calculation of statistics has little effect on estimates of variance, but soil moisture memory is sensitive to aggregation. Statistics for some networks stand out as unlike those of their neighbors, likely because of differences in instrumentation, calibration, and maintenance. Buried sensors appear to have less random error than near-field remote sensing techniques, and heat-dissipation sensors show less temporal variability than other types. Model soil moistures are evaluated using three metrics: standard deviation in time, temporal correlation (memory), and spatial correlation (length scale). Models do relatively well in capturing large-scale variability of metrics across climate regimes, but they poorly reproduce observed patterns at scales of hundreds of kilometers and smaller. Uncoupled land models do no better than coupled model configurations, nor do reanalyses outperform free-running models. Spatial decorrelation scales are found to be difficult to diagnose. Using data for model validation, calibration, or data assimilation from multiple soil moisture networks with different types of sensors and measurement techniques requires great caution. Data from models and observations should be put on the same spatial and temporal scales before comparison.

Full access
Takamichi Iguchi, Wei-Kuo Tao, Di Wu, Christa Peters-Lidard, Joseph A. Santanello, Eric Kemp, Yudong Tian, Jonathan Case, Weile Wang, Robert Ferraro, Duane Waliser, Jinwon Kim, Huikyo Lee, Bin Guan, Baijun Tian, and Paul Loikith


This study investigates the sensitivity of daily rainfall rates in regional seasonal simulations over the contiguous United States (CONUS) to different cumulus parameterization schemes. Daily rainfall fields were simulated at 24-km resolution using the NASA-Unified Weather Research and Forecasting (NU-WRF) Model for June–August 2000. Four cumulus parameterization schemes and two options for shallow cumulus components in a specific scheme were tested. The spread in the domain-mean rainfall rates across the parameterization schemes was generally consistent between the entire CONUS and most subregions. The selection of the shallow cumulus component in a specific scheme had more impact than that of the four cumulus parameterization schemes. Regional variability in the performance of each scheme was assessed by calculating optimally weighted ensembles that minimize full root-mean-square errors against reference datasets. The spatial pattern of the seasonally averaged rainfall was insensitive to the selection of cumulus parameterization over mountainous regions because of the topographical pattern constraint, so that the simulation errors were mostly attributed to the overall bias there. In contrast, the spatial patterns over the Great Plains regions as well as the temporal variation over most parts of the CONUS were relatively sensitive to cumulus parameterization selection. Overall, adopting a single simulation result was preferable to generating a better ensemble for the seasonally averaged daily rainfall simulation, as long as their overall biases had the same positive or negative sign. However, an ensemble of multiple simulation results was more effective in reducing errors in the case of also considering temporal variation.

Full access