Search Results

You are looking at 21 - 24 of 24 items for

  • Author or Editor: Kelly Lombardo x
  • Refine by Access: All Content x
Clear All Modify Search
Matthew R. Kumjian
,
Kevin A. Bowley
,
Paul M. Markowski
,
Kelly Lombardo
,
Zachary J. Lebo
, and
Pavlos Kollias

Abstract

An engaged scholarship project called “Snowflake Selfies” was developed and implemented in an upper-level undergraduate course at The Pennsylvania State University (Penn State). During the project, students conducted research on snow using low-cost, low-tech instrumentation that may be readily implemented broadly and scaled as needed, particularly at institutions with limited resources. During intensive observing periods (IOPs), students measured snowfall accumulations, snow-to-liquid ratios, and took microscopic photographs of snow using their smartphones. These observations were placed in meteorological context using radar observations and thermodynamic soundings, helping to reinforce concepts from atmospheric thermodynamics, cloud physics, radar, and mesoscale meteorology courses. Students also prepared a term paper and presentation using their datasets/photographs to hone communication skills. Examples from IOPs are presented. The Snowflake Selfies project was well received by undergraduate students as part of the writing-intensive course at Penn State. Responses to survey questions highlight the project’s effectiveness at engaging students and increasing their enthusiasm for the semester-long project. The natural link to social media broadened engagement to the community level. Given the successes at Penn State, we encourage Snowflake Selfies or similar projects to be adapted or implemented at other institutions.

Free access
Christine J. Kirchhoff
,
Joseph J. Barsugli
,
Gillian L. Galford
,
Ambarish V. Karmalkar
,
Kelly Lombardo
,
Scott R. Stephenson
,
Mathew Barlow
,
Anji Seth
,
Guiling Wang
, and
Austin Frank

Abstract

Global and national climate assessments are comprehensive, authoritative sources of information about observed and projected climate changes and their impacts on society. These assessments follow well-known, accepted procedures to create credible, legitimate, salient sources of information for policy- and decision-making, build capacity for action, and educate the public. While there is a great deal of research on assessments at global and national scales, there is little research or guidance for assessment at the U.S. state scale. To address the need for guidance for state climate assessments (SCAs), the authors combined insights from the literature, firsthand experience with four SCAs, and interviews with individuals involved in 10 other SCAs to identify challenges, draw lessons, and point out future research needs to guide SCAs. SCAs are challenged by sparseness of literature and data, insufficient support for ongoing assessment, short time lines, limited funding, and surprisingly, little deliberate effort to address legitimacy as a concern. Lessons learned suggest SCAs should consider credibility, legitimacy, and salience as core criteria; happen at regular intervals; identify assessment scope, resource allocation, and trade-offs between generation of new knowledge, engagement, and communication up front; and leverage boundary organizations. Future research should build on ongoing efforts to advance assessments, examine the effectiveness of different SCA approaches, and seek to inform both broad and specific guidance for SCAs.

Full access
Justin Sheffield
,
Andrew P. Barrett
,
Brian Colle
,
D. Nelun Fernando
,
Rong Fu
,
Kerrie L. Geil
,
Qi Hu
,
Jim Kinter
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Kelly Lombardo
,
Lindsey N. Long
,
Eric Maloney
,
Annarita Mariotti
,
Joyce E. Meyerson
,
Kingtse C. Mo
,
J. David Neelin
,
Sumant Nigam
,
Zaitao Pan
,
Tong Ren
,
Alfredo Ruiz-Barradas
,
Yolande L. Serra
,
Anji Seth
,
Jeanne M. Thibeault
,
Julienne C. Stroeve
,
Ze Yang
, and
Lei Yin

Abstract

This is the first part of a three-part paper on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) that evaluates the historical simulations of continental and regional climatology with a focus on a core set of 17 models. The authors evaluate the models for a set of basic surface climate and hydrological variables and their extremes for the continent. This is supplemented by evaluations for selected regional climate processes relevant to North American climate, including cool season western Atlantic cyclones, the North American monsoon, the U.S. Great Plains low-level jet, and Arctic sea ice. In general, the multimodel ensemble mean represents the observed spatial patterns of basic climate and hydrological variables but with large variability across models and regions in the magnitude and sign of errors. No single model stands out as being particularly better or worse across all analyses, although some models consistently outperform the others for certain variables across most regions and seasons and higher-resolution models tend to perform better for regional processes. The CMIP5 multimodel ensemble shows a slight improvement relative to CMIP3 models in representing basic climate variables, in terms of the mean and spread, although performance has decreased for some models. Improvements in CMIP5 model performance are noticeable for some regional climate processes analyzed, such as the timing of the North American monsoon. The results of this paper have implications for the robustness of future projections of climate and its associated impacts, which are examined in the third part of the paper.

Full access
Eric D. Maloney
,
Suzana J. Camargo
,
Edmund Chang
,
Brian Colle
,
Rong Fu
,
Kerrie L. Geil
,
Qi Hu
,
Xianan Jiang
,
Nathaniel Johnson
,
Kristopher B. Karnauskas
,
James Kinter
,
Benjamin Kirtman
,
Sanjiv Kumar
,
Baird Langenbrunner
,
Kelly Lombardo
,
Lindsey N. Long
,
Annarita Mariotti
,
Joyce E. Meyerson
,
Kingtse C. Mo
,
J. David Neelin
,
Zaitao Pan
,
Richard Seager
,
Yolande Serra
,
Anji Seth
,
Justin Sheffield
,
Julienne Stroeve
,
Jeanne Thibeault
,
Shang-Ping Xie
,
Chunzai Wang
,
Bruce Wyman
, and
Ming Zhao

Abstract

In part III of a three-part study on North American climate in phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, the authors examine projections of twenty-first-century climate in the representative concentration pathway 8.5 (RCP8.5) emission experiments. This paper summarizes and synthesizes results from several coordinated studies by the authors. Aspects of North American climate change that are examined include changes in continental-scale temperature and the hydrologic cycle, extremes events, and storm tracks, as well as regional manifestations of these climate variables. The authors also examine changes in the eastern North Pacific and North Atlantic tropical cyclone activity and North American intraseasonal to decadal variability, including changes in teleconnections to other regions of the globe. Projected changes are generally consistent with those previously published for CMIP3, although CMIP5 model projections differ importantly from those of CMIP3 in some aspects, including CMIP5 model agreement on increased central California precipitation. The paper also highlights uncertainties and limitations based on current results as priorities for further research. Although many projected changes in North American climate are consistent across CMIP5 models, substantial intermodel disagreement exists in other aspects. Areas of disagreement include projections of changes in snow water equivalent on a regional basis, summer Arctic sea ice extent, the magnitude and sign of regional precipitation changes, extreme heat events across the northern United States, and Atlantic and east Pacific tropical cyclone activity.

Full access