Search Results
You are looking at 21 - 30 of 72 items for
- Author or Editor: Lorenzo M. Polvani x
- Refine by Access: All Content x
Abstract
An idealized, dry general circulation model is used to examine the response of the tropospheric circulation to thermal forcings that mimic changes in stratospheric water vapor (SWV). It is found that SWV-like cooling in the stratosphere produces a poleward-shifted, strengthened jet and an expanded, weakened Hadley cell. This response is shown to be almost entirely driven by cooling located in the extratropical lower stratosphere; when cooling is limited to the tropical stratosphere, it generates a much weaker and qualitatively opposite response. It is demonstrated that these circulation changes arise independently of any changes in tropopause height, are insensitive to the detailed structure of the forcing function, and are robust to model resolution. The responses are quantitatively of the same order as those due to well-mixed greenhouse gases, suggesting a potentially significant contribution of SWV to past and future changes in the tropospheric circulation.
Abstract
An idealized, dry general circulation model is used to examine the response of the tropospheric circulation to thermal forcings that mimic changes in stratospheric water vapor (SWV). It is found that SWV-like cooling in the stratosphere produces a poleward-shifted, strengthened jet and an expanded, weakened Hadley cell. This response is shown to be almost entirely driven by cooling located in the extratropical lower stratosphere; when cooling is limited to the tropical stratosphere, it generates a much weaker and qualitatively opposite response. It is demonstrated that these circulation changes arise independently of any changes in tropopause height, are insensitive to the detailed structure of the forcing function, and are robust to model resolution. The responses are quantitatively of the same order as those due to well-mixed greenhouse gases, suggesting a potentially significant contribution of SWV to past and future changes in the tropospheric circulation.
Abstract
Recent efforts to narrow the spread in equilibrium climate sensitivity (ECS) across global climate models have focused on identifying observationally based constraints, which are rooted in empirical correlations between ECS and biases in the models’ present-day climate. This study reexamines one such constraint identified from CMIP3 models: the linkage between ECS and net top-of-the-atmosphere radiation biases in the Southern Hemisphere (SH).
As previously documented, the intermodel spread in the ECS of CMIP3 models is linked to present-day cloud and net radiation biases over the midlatitude Southern Ocean, where higher cloud fraction in the present-day climate is associated with larger values of ECS. However, in this study, no physical explanation is found to support this relationship. Furthermore, it is shown here that this relationship disappears in CMIP5 models and is unique to a subset of CMIP models characterized by unrealistically bright present-day clouds in the SH subtropics. In view of this evidence, Southern Ocean cloud and net radiation biases appear inappropriate for providing observationally based constraints on ECS.
Instead of the Southern Ocean, this study points to the stratocumulus-to-cumulus transition regions of the SH subtropical oceans as key to explaining the intermodel spread in the ECS of both CMIP3 and CMIP5 models. In these regions, ECS is linked to present-day cloud and net radiation biases with a plausible physical mechanism: models with brighter subtropical clouds in the present-day climate show greater ECS because 1) subtropical clouds dissipate with increasing CO2 concentrations in many models and 2) the dissipation of brighter clouds contributes to greater solar warming of the surface.
Abstract
Recent efforts to narrow the spread in equilibrium climate sensitivity (ECS) across global climate models have focused on identifying observationally based constraints, which are rooted in empirical correlations between ECS and biases in the models’ present-day climate. This study reexamines one such constraint identified from CMIP3 models: the linkage between ECS and net top-of-the-atmosphere radiation biases in the Southern Hemisphere (SH).
As previously documented, the intermodel spread in the ECS of CMIP3 models is linked to present-day cloud and net radiation biases over the midlatitude Southern Ocean, where higher cloud fraction in the present-day climate is associated with larger values of ECS. However, in this study, no physical explanation is found to support this relationship. Furthermore, it is shown here that this relationship disappears in CMIP5 models and is unique to a subset of CMIP models characterized by unrealistically bright present-day clouds in the SH subtropics. In view of this evidence, Southern Ocean cloud and net radiation biases appear inappropriate for providing observationally based constraints on ECS.
Instead of the Southern Ocean, this study points to the stratocumulus-to-cumulus transition regions of the SH subtropical oceans as key to explaining the intermodel spread in the ECS of both CMIP3 and CMIP5 models. In these regions, ECS is linked to present-day cloud and net radiation biases with a plausible physical mechanism: models with brighter subtropical clouds in the present-day climate show greater ECS because 1) subtropical clouds dissipate with increasing CO2 concentrations in many models and 2) the dissipation of brighter clouds contributes to greater solar warming of the surface.
Abstract
The uncertainty arising from internal climate variability in climate change projections of the Hadley circulation (HC) is presently unknown. In this paper it is quantified by analyzing a 40-member ensemble of integrations of the Community Climate System Model, version 3 (CCSM3), under the Special Report on Emissions Scenarios (SRES) A1B scenario over the period 2000–60. An additional set of 100-yr-long time-slice integrations with the atmospheric component of the same model [Community Atmosphere Model, version 3.0 (CAM3)] is also analyzed.
Focusing on simple metrics of the HC—its strength, width, and height—three key results emerge from the analysis of the CCSM3 ensemble. First, the projected weakening of the HC is almost entirely confined to the Northern Hemisphere, and is stronger in winter than in summer. Second, the projected widening of the HC occurs only in the winter season but in both hemispheres. Third, the projected rise of the tropical tropopause occurs in both hemispheres and in all seasons and is, by far, the most robust of the three metrics.
This paper shows further that uncertainty in future trends of the HC width is largely controlled by extratropical variability, while those of HC strength and height are associated primarily with tropical dynamics. Comparison of the CCSM3 and CAM3 integrations reveals that ocean–atmosphere coupling is the dominant source of uncertainty in future trends of HC strength and height and of the tropical mean meridional circulation in general. Finally, uncertainty in future trends of the hydrological cycle is largely captured by the uncertainty in future trends of the mean meridional circulation.
Abstract
The uncertainty arising from internal climate variability in climate change projections of the Hadley circulation (HC) is presently unknown. In this paper it is quantified by analyzing a 40-member ensemble of integrations of the Community Climate System Model, version 3 (CCSM3), under the Special Report on Emissions Scenarios (SRES) A1B scenario over the period 2000–60. An additional set of 100-yr-long time-slice integrations with the atmospheric component of the same model [Community Atmosphere Model, version 3.0 (CAM3)] is also analyzed.
Focusing on simple metrics of the HC—its strength, width, and height—three key results emerge from the analysis of the CCSM3 ensemble. First, the projected weakening of the HC is almost entirely confined to the Northern Hemisphere, and is stronger in winter than in summer. Second, the projected widening of the HC occurs only in the winter season but in both hemispheres. Third, the projected rise of the tropical tropopause occurs in both hemispheres and in all seasons and is, by far, the most robust of the three metrics.
This paper shows further that uncertainty in future trends of the HC width is largely controlled by extratropical variability, while those of HC strength and height are associated primarily with tropical dynamics. Comparison of the CCSM3 and CAM3 integrations reveals that ocean–atmosphere coupling is the dominant source of uncertainty in future trends of HC strength and height and of the tropical mean meridional circulation in general. Finally, uncertainty in future trends of the hydrological cycle is largely captured by the uncertainty in future trends of the mean meridional circulation.
Abstract
A new diagnostic for measuring the ability of atmospheric models to reproduce realistic low-frequency variability is introduced in the context of Held and Suarez’s 1994 proposal for comparing the dynamics of different general circulation models. A simple procedure to compute τ, the e-folding time scale of the annular mode autocorrelation function, is presented. This quantity concisely quantifies the strength of low-frequency variability in a model and is easy to compute in practice. The sensitivity of τ to model numerics is then studied for two dry primitive equation models driven with the Held–Suarez forcings: one pseudospectral and the other finite volume. For both models, τ is found to be unrealistically large when the horizontal resolutions are low, such as those that are often used in studies in which long integrations are needed to analyze model variability on low frequencies. More surprising is that it is found that, for the pseudospectral model, τ is particularly sensitive to vertical resolution, especially with a triangular truncation at wavenumber 42 (a very common resolution choice). At sufficiently high resolution, the annular mode autocorrelation time scale τ in both models appears to converge around values of 20–25 days, suggesting the existence of an intrinsic time scale at which the extratropical jet vacillates in the Held and Suarez system. The importance of τ for computing the correct response of a model to climate change is explicitly demonstrated by perturbing the pseudospectral model with simple torques. The amplitude of the model’s response to external forcing increases as τ increases, as suggested by the fluctuation–dissipation theorem.
Abstract
A new diagnostic for measuring the ability of atmospheric models to reproduce realistic low-frequency variability is introduced in the context of Held and Suarez’s 1994 proposal for comparing the dynamics of different general circulation models. A simple procedure to compute τ, the e-folding time scale of the annular mode autocorrelation function, is presented. This quantity concisely quantifies the strength of low-frequency variability in a model and is easy to compute in practice. The sensitivity of τ to model numerics is then studied for two dry primitive equation models driven with the Held–Suarez forcings: one pseudospectral and the other finite volume. For both models, τ is found to be unrealistically large when the horizontal resolutions are low, such as those that are often used in studies in which long integrations are needed to analyze model variability on low frequencies. More surprising is that it is found that, for the pseudospectral model, τ is particularly sensitive to vertical resolution, especially with a triangular truncation at wavenumber 42 (a very common resolution choice). At sufficiently high resolution, the annular mode autocorrelation time scale τ in both models appears to converge around values of 20–25 days, suggesting the existence of an intrinsic time scale at which the extratropical jet vacillates in the Held and Suarez system. The importance of τ for computing the correct response of a model to climate change is explicitly demonstrated by perturbing the pseudospectral model with simple torques. The amplitude of the model’s response to external forcing increases as τ increases, as suggested by the fluctuation–dissipation theorem.
Abstract
The effect of a simple representation of the Hadley circulation on the propagation and nonlinear reflection of planetary-scale Rossby waves in the winter hemisphere is investigated numerically in a single-layer shallow-water model.
In the first instance, waves are forced by a zonal wavenumber three topography centered in the extratropics. In the linear limit the location of the low-latitude critical line at which the waves are absorbed is displaced poleward by the Hadley circulation. At finite forcing amplitude the critical layer regions where the waves break are found to be displaced poleward by a similar distance. The Hadley circulation is also found to inhibit the onset of nonlinear reflection by increasing the dissipation of wave activity in the critical layer.
Second, for waves generated by an isolated mountain, the presence of the Hadley circulation further inhibits nonlinear reflection by generating a strong westerly flux of wave activity within the critical layer. This westerly flux is shown to be largely advective and is explained by the poleward displacement of the critical line into the region of westerly flow. A simple expression is derived for the minimum zonal wind strength allowing propagation in the case of a quasigeostrophic β-plane flow when the mean meridional wind
Abstract
The effect of a simple representation of the Hadley circulation on the propagation and nonlinear reflection of planetary-scale Rossby waves in the winter hemisphere is investigated numerically in a single-layer shallow-water model.
In the first instance, waves are forced by a zonal wavenumber three topography centered in the extratropics. In the linear limit the location of the low-latitude critical line at which the waves are absorbed is displaced poleward by the Hadley circulation. At finite forcing amplitude the critical layer regions where the waves break are found to be displaced poleward by a similar distance. The Hadley circulation is also found to inhibit the onset of nonlinear reflection by increasing the dissipation of wave activity in the critical layer.
Second, for waves generated by an isolated mountain, the presence of the Hadley circulation further inhibits nonlinear reflection by generating a strong westerly flux of wave activity within the critical layer. This westerly flux is shown to be largely advective and is explained by the poleward displacement of the critical line into the region of westerly flow. A simple expression is derived for the minimum zonal wind strength allowing propagation in the case of a quasigeostrophic β-plane flow when the mean meridional wind
Abstract
A simple atmospheric general circulation model (GCM) is used to investigate the transient response of the stratosphere–troposphere system to externally imposed pulses of lower-tropospheric planetary wave activity. The atmospheric GCM is a dry, hydrostatic, global primitive-equations model, whose circulation includes an active polar vortex and a tropospheric jet maintained by baroclinic eddies. Planetary wave activity pulses are generated by a perturbation of the solid lower boundary that grow and decay over a period of 10 days. The planetary wave pulses propagate upward and break in the stratosphere. Subsequently, a zonal-mean circulation anomaly propagates downward, often into the troposphere, at lags of 30–100 days. The evolution of the response is found to be dependent on the state of the stratosphere–troposphere system at the time the pulse is generated. In particular, on the basis of a large ensemble of these simulations, it is found that the length of time the signal takes to propagate downward from the stratosphere is controlled by initial anomalies in the zonal-mean circulation and in the zonal-mean wave drag. Criteria based on these anomaly patterns can be used, therefore, to predict the long-term surface response of the stratosphere–troposphere system to a planetary wave pulse up to 90 days after the pulse is generated. In an independent test, it is verified that the initial states that most strongly satisfy these criteria respond in the expected way to the lower-tropospheric wave activity pulse.
Abstract
A simple atmospheric general circulation model (GCM) is used to investigate the transient response of the stratosphere–troposphere system to externally imposed pulses of lower-tropospheric planetary wave activity. The atmospheric GCM is a dry, hydrostatic, global primitive-equations model, whose circulation includes an active polar vortex and a tropospheric jet maintained by baroclinic eddies. Planetary wave activity pulses are generated by a perturbation of the solid lower boundary that grow and decay over a period of 10 days. The planetary wave pulses propagate upward and break in the stratosphere. Subsequently, a zonal-mean circulation anomaly propagates downward, often into the troposphere, at lags of 30–100 days. The evolution of the response is found to be dependent on the state of the stratosphere–troposphere system at the time the pulse is generated. In particular, on the basis of a large ensemble of these simulations, it is found that the length of time the signal takes to propagate downward from the stratosphere is controlled by initial anomalies in the zonal-mean circulation and in the zonal-mean wave drag. Criteria based on these anomaly patterns can be used, therefore, to predict the long-term surface response of the stratosphere–troposphere system to a planetary wave pulse up to 90 days after the pulse is generated. In an independent test, it is verified that the initial states that most strongly satisfy these criteria respond in the expected way to the lower-tropospheric wave activity pulse.
Abstract
Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.
Abstract
Using a hierarchy of models, and observations, the effect of vertical shear in the lower stratosphere on baroclinic instability in the tropospheric midlatitude jet is examined. It is found that increasing stratospheric shear increases the phase speed of growing baroclinic waves, increases the growth rate of modes with low synoptic wavenumbers, and decreases the growth rate of modes with higher wavenumbers. The meridional structure of the linear modes, and their acceleration of the zonal mean jet, changes with increasing stratospheric shear, but in a way that apparently contradicts the observed stratosphere–troposphere northern annular mode (NAM) connection. This contradiction is resolved at finite amplitude. In nonlinear life cycle experiments it is found that increasing stratospheric shear, without changing the jet structure in the troposphere, produces a transition from anticyclonic (LC1) to cyclonic (LC2) behavior at wavenumber 7. All life cycles with wavenumbers lower than 7 are LC1, and all with wavenumber greater than 7 are LC2. For the LC1 life cycles, the effect of increasing stratospheric shear is to increase the poleward displacement of the zonal mean jet by the eddies, which is consistent with the observed stratosphere–troposphere NAM connection. Finally, it is found that the connection between high stratospheric shear and high-tropospheric NAM is present by NCEP–NCAR reanalysis data.
Abstract
The authors present a theory for the zonal wavelength of tropical depression–type disturbances, which occur as a result of Rossby wave radiation from a preexisting tropical cyclone (TC). In some cases, such disturbances undergo tropical cyclogenesis, resulting in a pair of tropical cyclones; the theory then predicts the zonal separation distance of such tropical cyclone pairs.
Numerical experiments are presented in which a thermally forced vortex, superimposed on an initial state of rest, is moved at different velocities in a shallow-water model on a sphere. Vortices moving westward generate coherent wave trains to the east or southeast (depending on the amplitude of the vortex), resembling those in observations. The zonal wavelengths of these wave trains in each case are well described by the linear stationary solution in the frame comoving with the vortex. Vortices moving eastward or remaining stationary do not generate such trains, also consistent with linear theory, which admits no stationary solutions in such cases. It is hypothesized that the wavelengths of observed disturbances are set by the properties of the relevant stationary solution. The environmental flow velocity that determines this wavelength is not the translation velocity of the tropical cyclone, but the difference between the steering flow of the radiated Rossby waves and that of the TC. The authors argue that either horizontal or vertical shear in the environment of the TC can generate differences between these steering flows of the necessary magnitude and sign to generate the observed wavelengths.
Abstract
The authors present a theory for the zonal wavelength of tropical depression–type disturbances, which occur as a result of Rossby wave radiation from a preexisting tropical cyclone (TC). In some cases, such disturbances undergo tropical cyclogenesis, resulting in a pair of tropical cyclones; the theory then predicts the zonal separation distance of such tropical cyclone pairs.
Numerical experiments are presented in which a thermally forced vortex, superimposed on an initial state of rest, is moved at different velocities in a shallow-water model on a sphere. Vortices moving westward generate coherent wave trains to the east or southeast (depending on the amplitude of the vortex), resembling those in observations. The zonal wavelengths of these wave trains in each case are well described by the linear stationary solution in the frame comoving with the vortex. Vortices moving eastward or remaining stationary do not generate such trains, also consistent with linear theory, which admits no stationary solutions in such cases. It is hypothesized that the wavelengths of observed disturbances are set by the properties of the relevant stationary solution. The environmental flow velocity that determines this wavelength is not the translation velocity of the tropical cyclone, but the difference between the steering flow of the radiated Rossby waves and that of the TC. The authors argue that either horizontal or vertical shear in the environment of the TC can generate differences between these steering flows of the necessary magnitude and sign to generate the observed wavelengths.
Abstract
Using a global, one-layer shallow water model, the response of a westerly flow to a localized mountain is investigated. A steady, linear response at small mountain heights successively gives way first to a steady flow in which nonlinearities are important and then to unsteady, but periodic, flow at larger mountain heights. At first the unsteady behavior consists of a low-frequency oscillation of the entire Northern Hemisphere zonal flow. As the mountain height is increased further, however, the oscillatory behavior becomes localized in the diffluent jet exit region downstream of the mountain. The oscillation then takes the form of a relatively rapid vortex shedding event, followed by a gradual readjustment of the split jet structure in the diffluent region. Although relatively simple, the model exhibits a surprisingly high sensitivity to slight parameter changes. A linear stability analysis of the time-averaged flow is able to capture the transition from steady to time-dependent behavior, but fails to capture the transition between the two distinct regimes of time-dependent response. Moreover, the most unstable modes of the time-averaged flow are found to be stationary and fail to capture the salient features of the EOFs of the full time-dependent flow. These results therefore suggest that, even in the simplest cases, such as the one studied here, a linear analysis of the time-averaged flow can be highly inadequate in describing the full nonlinear behavior.
Abstract
Using a global, one-layer shallow water model, the response of a westerly flow to a localized mountain is investigated. A steady, linear response at small mountain heights successively gives way first to a steady flow in which nonlinearities are important and then to unsteady, but periodic, flow at larger mountain heights. At first the unsteady behavior consists of a low-frequency oscillation of the entire Northern Hemisphere zonal flow. As the mountain height is increased further, however, the oscillatory behavior becomes localized in the diffluent jet exit region downstream of the mountain. The oscillation then takes the form of a relatively rapid vortex shedding event, followed by a gradual readjustment of the split jet structure in the diffluent region. Although relatively simple, the model exhibits a surprisingly high sensitivity to slight parameter changes. A linear stability analysis of the time-averaged flow is able to capture the transition from steady to time-dependent behavior, but fails to capture the transition between the two distinct regimes of time-dependent response. Moreover, the most unstable modes of the time-averaged flow are found to be stationary and fail to capture the salient features of the EOFs of the full time-dependent flow. These results therefore suggest that, even in the simplest cases, such as the one studied here, a linear analysis of the time-averaged flow can be highly inadequate in describing the full nonlinear behavior.
Abstract
Horizontal temperature gradients are small in the tropical atmosphere, as a consequence of the smallness of the Coriolis parameter near the equator. This provides a strong constraint on both large-scale fluid dynamics and diabatic processes. This work is a step toward the construction of a balanced dynamical theory for the tropical circulation that is based on this constraint, and in which the diabatic processes are explicit and interactive.
The authors first derive the basic fluid-dynamical scaling under the weak temperature gradient (WTG) approximation in a shallow water system with a fixed mass source representing an externally imposed heating. This derivation follows an earlier similar one by Held and Hoskins, but extends the analysis to the nonlinear case (though on an f plane), examines the resulting system in more detail, and presents a solution for an axisymmetric “top-hat” forcing. The system is truly balanced, having no gravity waves, but is different from other balance models in that the heating is included a priori in the scaling.
The WTG scaling is then applied to a linear moist model in which the convective heating is controlled by a moisture variable that is advected by the flow. This moist model is derived from the Quasi-equilibrium Tropical Circulation Model (QTCM) equations of Neelin and Zeng but can be viewed as somewhat more general. A number of additional approximations are made in order to consider balanced dynamical modes, apparently not studied previously, which owe their existence to interactions of the moisture and flow fields. A particularly interesting mode arises on an f plane with a constant background moisture gradient. In the limit of low frequency and zero meridional wavenumber this mode has a dispersion relation mathematically identical to that of a barotropic Rossby wave, though the phase speed is eastward (for moisture decreasing poleward in the background state) and the propagation mechanism is quite different. This mode also has significant positive growth rate for low wavenumbers. The addition of the β effect complicates matters. For typical parameters, when β is included the direction of phase propagation is ambiguous, and the growth rate reduced, as the effects of the background gradients in moisture and planetary vorticity appear to cancel to a large degree. Possible relevance to intraseasonal variability and easterly wave dynamics is briefly discussed.
Abstract
Horizontal temperature gradients are small in the tropical atmosphere, as a consequence of the smallness of the Coriolis parameter near the equator. This provides a strong constraint on both large-scale fluid dynamics and diabatic processes. This work is a step toward the construction of a balanced dynamical theory for the tropical circulation that is based on this constraint, and in which the diabatic processes are explicit and interactive.
The authors first derive the basic fluid-dynamical scaling under the weak temperature gradient (WTG) approximation in a shallow water system with a fixed mass source representing an externally imposed heating. This derivation follows an earlier similar one by Held and Hoskins, but extends the analysis to the nonlinear case (though on an f plane), examines the resulting system in more detail, and presents a solution for an axisymmetric “top-hat” forcing. The system is truly balanced, having no gravity waves, but is different from other balance models in that the heating is included a priori in the scaling.
The WTG scaling is then applied to a linear moist model in which the convective heating is controlled by a moisture variable that is advected by the flow. This moist model is derived from the Quasi-equilibrium Tropical Circulation Model (QTCM) equations of Neelin and Zeng but can be viewed as somewhat more general. A number of additional approximations are made in order to consider balanced dynamical modes, apparently not studied previously, which owe their existence to interactions of the moisture and flow fields. A particularly interesting mode arises on an f plane with a constant background moisture gradient. In the limit of low frequency and zero meridional wavenumber this mode has a dispersion relation mathematically identical to that of a barotropic Rossby wave, though the phase speed is eastward (for moisture decreasing poleward in the background state) and the propagation mechanism is quite different. This mode also has significant positive growth rate for low wavenumbers. The addition of the β effect complicates matters. For typical parameters, when β is included the direction of phase propagation is ambiguous, and the growth rate reduced, as the effects of the background gradients in moisture and planetary vorticity appear to cancel to a large degree. Possible relevance to intraseasonal variability and easterly wave dynamics is briefly discussed.