Search Results

You are looking at 21 - 30 of 43 items for

  • Author or Editor: Lynn K. Shay x
  • Refine by Access: All Content x
Clear All Modify Search
Lynn K. Shay
,
Russell L. Elsberry
, and
Peter G. Black

Abstract

During the passage of hurricane Norbert in 1984, the Hurricane Research Division of NOAA conducted a Planetary Boundary Layer Experiment that included the deployment of Airborne eXpendable Current Profilers (AXCP). A total of. 16 AXCPs provided for the fist time high-resolution vertical profiles of currents and temperatures in hurricane wind conditions. This study focuses on the vertical structure of the near-inertial baroclinic current excited by the passage of this hurricane.

The transient hurricane-induced currents are isolated from the AXCP profiles in Norbert by subtracting a spatially-averaged current. Near the center of hurricane Norbert, the WKBJ-scaled vertical wavenumber spectra are a decade greater than the Garrett-Munk spectra (GM75). The fist ten linear, baroclinic free modes are calculated from the spatially-averaged Brunt–Väisälä frequency. To allow a more direct comparison with the AXCP observations in the current wind regime, the near-inertial response for the three dimensional velocities is simulated by superposing a hurricane-like wind stress field onto the first ten baroclinic modes. About 70% of the current variance in hurricane Norbert can be explained by a sum of only the first four near-inertial modes. Most of the ocean current variability can be accounted for by the wind stress curl, although the direct effect of the wind stress and the soon divergence do contribute to the observed current variance within 30–60 km from the storm. However, these last two effects rapidly diminish after one inertial period. Although the energy input by the hurricane forcing is spread over all of the vertical wavelengths, most of the energy is contained in the gravest four vertical modes which then govern the dynamics in the wake region.

Full access
Johna E. Rudzin
,
Lynn K. Shay
, and
Benjamin Jaimes de la Cruz

Abstract

The influence of the Amazon–Orinoco River plume in the Caribbean Sea on latent and sensible heat flux (enthalpy flux) and tropical cyclone (TC) intensity is investigated for Hurricanes Ivan (2004), Emily (2005), Dean (2007), and Felix (2007) using dropwindsonde data, satellite sea surface temperature (SST), and the SMARTS climatology. Relationships among enthalpy fluxes, ocean heat content relative to the 26°C isotherm depth (OHC), and SST during storm passage are diagnosed. Results indicate that sea surface cooling in the river plume, a low-OHC region, is comparable to that in the warm eddy region, which has high OHC. An isothermal layer heat budget shows that upper-ocean cooling in the river plume can be explained predominantly by sea-to-air heat flux, rather than by entrainment flux from the thermocline. The latter two findings suggest that relatively large upper-ocean stratification in the plume regime limited entrainment cooling, sustaining SST and enthalpy flux. Inspection of atmospheric variables indicates that deep moderate wind shear is prevalent, and equivalent potential temperature is enhanced over the river plume region for most of these storms. Thus, sustained surface fluxes in this region may have provided warm, moist boundary layer conditions, which may have helped these storms to rapidly intensify even over relatively low-OHC waters and moderate shear. These findings are important because several Caribbean Sea TCs, including these cases, have been underforecast with respect to intensity and/or rapid intensifications, yet minimal upper-ocean observations exist to understand air–sea interaction during TCs in the salinity-stratified Amazon–Orinoco plume regime.

Full access
Michelle Mainelli
,
Mark DeMaria
,
Lynn K. Shay
, and
Gustavo Goni

Abstract

Research investigating the importance of the subsurface ocean structure on tropical cyclone intensity change has been ongoing for several decades. While the emergence of altimetry-derived sea height observations from satellites dates back to the 1980s, it was difficult and uncertain as to how to utilize these measurements in operations as a result of the limited coverage. As the in situ measurement coverage expanded, it became possible to estimate the upper oceanic heat content (OHC) over most ocean regions. Beginning in 2002, daily OHC analyses have been generated at the National Hurricane Center (NHC). These analyses are used qualitatively for the official NHC intensity forecast, and quantitatively to adjust the Statistical Hurricane Intensity Prediction Scheme (SHIPS) forecasts. The primary purpose of this paper is to describe how upper-ocean structure information was transitioned from research to operations, and how it is being used to generate NHC’s hurricane intensity forecasts. Examples of the utility of this information for recent category 5 hurricanes (Isabel, Ivan, Emily, Katrina, Rita, and Wilma from the 2003–05 hurricane seasons) are also presented. Results show that for a large sample of Atlantic storms, the OHC variations have a small but positive impact on the intensity forecasts. However, for intense storms, the effect of the OHC is much more significant, suggestive of its importance on rapid intensification. The OHC input improved the average intensity errors of the SHIPS forecasts by up to 5% for all cases from the category 5 storms, and up to 20% for individual storms, with the maximum improvement for the 72–96-h forecasts. The qualitative use of the OHC information on the NHC intensity forecasts is also described. These results show that knowledge of the upper-ocean thermal structure is fundamental to accurately forecasting intensity changes of tropical cyclones, and that this knowledge is making its way into operations. The statistical results obtained here indicate that the OHC only becomes important when it has values much larger than that required to support a tropical cyclone. This result suggests that the OHC is providing a measure of the upper ocean’s influence on the storm and improving the forecast.

Full access
Lynn K. Shay
,
Jorge Martinez-Pedraja
,
Thomas M. Cook
,
Brian K. Haus
, and
Robert H. Weisberg

Abstract

A dual-station high-frequency Wellen Radar (WERA), transmitting at 16.045 MHz, was deployed along the west Florida shelf in phased array mode during the summer of 2003. A 33-day, continuous time series of radial and vector surface current fields was acquired starting on 23 August ending 25 September 2003. Over a 30-min sample interval, WERA mapped coastal ocean currents over an ≈40 km × 80 km footprint with a 1.2-km horizontal resolution. A total of 1628 snapshots of the vector surface currents was acquired, with only 70 samples (4.3%) missing from the vector time series. Comparisons to subsurface measurements from two moored acoustic Doppler current profilers revealed RMS differences of 1 to 5 cm s−1 for both radial and Cartesian current components. Regression analyses indicated slopes close to unity with small biases between surface and subsurface measurements at 4-m depth in the east–west (u) and north–south (υ) components, respectively. Vector correlation coefficients were 0.9 with complex phases of −3° and 5° at EC4 (20-m isobath) and NA2 (25-m isobath) moorings, respectively.

Complex surface circulation patterns were observed that included tidal and wind-driven currents over the west Florida shelf. Tidal current amplitudes were 4 to 5 cm s−1 for the diurnal and semidiurnal constituents. Vertical structure of these tidal currents indicated that the semidiurnal components were predominantly barotropic whereas diurnal tidal currents had more of a baroclinic component. Tidal currents were removed from the observed current time series and were compared to the 10-m adjusted winds at a surface mooring. Based on these time series comparisons, regression slopes were 0.02 to 0.03 in the east–west and north–south directions, respectively. During Tropical Storm Henri’s passage on 5 September 2003, cyclonically rotating surface winds forced surface velocities of more than 35 cm s−1 as Henri made landfall north of Tampa Bay, Florida. These results suggest that the WERA measured the surface velocity well under weak to tropical storm wind conditions.

Full access
Lynn K. Shay
,
Steven J. Lentz
,
Hans C. Graber
, and
Brian K. Haus

Abstract

Ocean surface current measurements from high-frequency (HF) radar are assessed by comparing these data to near-surface current observations from 1 to 30 October 1994 at two moored subsurface current meter arrays (20 and 25 m) instrumented with vector-measuring current meters (VMCMs) and Seacat sensors during the Duck94 experiment. A dual-station ocean surface current radar (OSCR) mapped the current fields at 20-min intervals at a horizontal resolution of 1.2 km over a 25 km × 44 km domain using the HF (25.4 MHz) mode and directly overlooked these moorings. In response to wind, tidal, and buoyancy forcing over 29 days, surface current observations were acquired 95% of the time in the core of the OSCR domain, decreasing to levels of about 50% in the offshore direction.

Regression analyses between surface and subsurface measurements at 4 and 6 m indicated biases of 2–6 cm s−1, slopes of O(1), and rms differences of 7–9 cm s−1. Episodic freshwater intrusions of about 30 practical salinity units (psu) were associated with a coastally trapped buoyant jet superposed on tidal currents. This tidal forcing consisted of diurnal (K1) and semidiurnal (M2) tidal constituents where the surface and subsurface (4 m) speeds were 3 and 8 cm s−1, and 2 and 7 cm s−1, respectively. During the passage of a nor’easter, near-surface winds reached 14 m s−1, which induced vertical mixing that caused weak stratification in the water column. An abrupt wind change following this event excited near-inertial (≈20.3 h) currents with amplitudes of about 20 cm s−1 rotating clockwise with time and depth. Bulk current shears over 4- and 6-m layers were O(10−2 s−1) at the 25-m mooring where the correlation coefficients exceeded 0.8. Similar results were found at the 20-m mooring until the nor’easter when correlation coefficients decreased to 0.5 due to the superposition of storm-induced flows and the buoyant jet, causing the surface current to exceed 90 cm s−1 over the inner to midshelf.

Full access
Claire McCaskill
,
Lynn K. Shay
,
Jodi K. Brewster
, and
Patrick C. Meyers

Abstract

A Systematically Merged Pacific Ocean Regional Temperature and Salinity (SPORTS) climatology was created to estimate ocean heat content (OHC) for tropical cyclone (TC) intensity forecasting and other applications. A technique similar to the creation of the Systematically Merged Atlantic Regional Temperature and Salinity (SMARTS) climatology was used to blend temperature and salinity fields from the Generalized Digital Environment Model and World Ocean Atlas 2001 at a 0.25° resolution. The weights for the blending of these two climatologies were estimated by minimizing residual covariances across the basin. Drift velocities associated with eddy variability were accounted for using a series of 3-yr sea surface height anomalies (SSHA) to ensure continuity between the periods of different altimeters. In addition to producing daily estimates of the 20° and 26°C isotherm depths, mixed-layer depth, and OHC, the model produces mapping errors from the optimal interpolation of the SSHA due to gaps in altimeter track coverage and sensor uncertainties.

Using SPORTS with satellite-derived sea surface temperature (SST) and SSHA fields from radar altimetry, daily OHC was estimated from 2000 to 2011 using a 2.5-layer model approach. Argo profiling floats, expendable probes from ships and aircraft, long-term Tropical Atmosphere Ocean (TAO) moorings, and drifters provide more than 267 000 quality controlled in situ thermal profiles to assess uncertainty in estimates from SPORTS. This carefully constructed climatology creates an accurate estimation of OHC from satellite-based measurements, which can then be used in TC intensity forecasts in the North Pacific Ocean and analysis of ocean thermodynamics. The SPORTS time and space series extends from 1998 to 2016, forming a 19-yr dataset by the end of 2016.

Full access
Xiaodong Hong
,
Simon W. Chang
,
Sethu Raman
,
Lynn K. Shay
, and
Richard Hodur

Abstract

Hurricane Opal (1995) experienced a rapid, unexpected intensification in the Gulf of Mexico that coincided with its encounter with a warm core ring (WCR). The relative positions of Opal and the WCR and the timing of the intensification indicate strong air–sea interactions between the tropical cyclone and the ocean. To study the mutual response of Opal and the Gulf of Mexico, a coupled model is used consisting of a nonhydrostatic atmospheric component of the Naval Research Laboratory’s Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS), and the hydrostatic Geophysical Fluid Dynamics Laboratory’s Modular Ocean Model version 2 (MOM 2).

The coupling between the ocean and the atmosphere components of the model are accomplished by conservation of heat, salt, momentum, as well as the sensible and latent heat fluxes at the air–sea interface. The atmospheric model has two nests with spatial resolutions of 0.6° and 0.2°. The ocean model has a uniform resolution of 0.2°. The oceanic model domain covers the Gulf of Mexico basin and coincides with a fine-mesh atmospheric domain of the COAMPS. The initial condition for the atmospheric component of COAMPS is the archived Navy Operational Global Atmospheric Prediction System operational global analysis, enhanced with observations. The initial ocean condition for the oceanic component is obtained from a 2-yr MOM 2 simulation with climatological forcing and fixed mass inflow into the Gulf. The initial state in the Gulf of Mexico consists of a realistic Loop Current and a shed WCR.

The 72-h simulation of the coupled system starting from 1200 UTC 2 October 1995 reproduces the observed storm intensity with a minimum sea level pressure (MSLP) of 918 hPa, occurring at 1800 UTC 4 October, a 6-h delay compared to the observation. The rapid intensification to the maximum intensity and the subsequent weakening are not as dramatic as the observed. The simulated track is located slightly to the east of the observed track, placing it directly over the simulated WCR, where the sea surface temperature (SST) cooling is approximately 0.5°C, consistent with buoy measurements acquired within the WCR. This cooling is significantly less over the WCR than over the common Gulf water due to the deeper and warmer layers in the WCR. Wind-induced currents of 150 cm s−1 are similar to those in earlier idealized simulations, and the forced current field in Opal’s wake is characterized by near-inertial oscillations superimposed on the anticyclonic circulation around the WCR.

Several numerical experiments are conducted to isolate the effects of the WCR and the ocean–atmosphere coupling. The major findings of these numerical experiments are summarized as follows.

  1. Opal intensifies an additional 17 hPa between the times when Opal’s center enters and exits the outer edge of the WCR. Without the WCR, Opal only intensifies another 7 hPa in the same period.

  2. The maximum surface sensible and latent heat flux amounts to 2842 W m−2. This occurs when Opal’s surface circulation brings northwesterly flow over the SST gradient in the northwestern quadrant of the WCR.

  3. Opal extracts 40% of the available heat capacity (temperature greater than 26°C) from the WCR.

  4. While the WCR enhances the tropical cyclone and ocean coupling as indicated by strong interfacial fluxes, it reduces the negative feedback. The negative feedback of the induced SST cooling to Hurricane Opal is 5 hPa. This small feedback is due to the relatively large heat content of the WCR, and the negative feedback is stronger in the absence of the WCR, producing a difference of 8 hPa in the MSLP of Opal.

Full access
Benjamin Jaimes de la Cruz
,
Lynn K. Shay
,
Joshua B. Wadler
, and
Johna E. Rudzin

Abstract

Sea-to-air heat fluxes are the energy source for tropical cyclone (TC) development and maintenance. In the bulk aerodynamic formulas, these fluxes are a function of surface wind speed U 10 and air–sea temperature and moisture disequilibrium (ΔT and Δq, respectively). Although many studies have explained TC intensification through the mutual dependence between increasing U 10 and increasing sea-to-air heat fluxes, recent studies have found that TC intensification can occur through deep convective vortex structures that obtain their local buoyancy from sea-to-air moisture fluxes, even under conditions of relatively low wind. Herein, a new perspective on the bulk aerodynamic formulas is introduced to evaluate the relative contribution of wind-driven (U 10) and thermodynamically driven (ΔT and Δq) ocean heat uptake. Previously unnoticed salient properties of these formulas, reported here, are as follows: 1) these functions are hyperbolic and 2) increasing Δq is an efficient mechanism for enhancing the fluxes. This new perspective was used to investigate surface heat fluxes in six TCs during phases of steady-state intensity (SS), slow intensification (SI), and rapid intensification (RI). A capping of wind-driven heat uptake was found during periods of SS, SI, and RI. Compensation by larger values of Δq > 5 g kg−1 at moderate values of U 10 led to intense inner-core moisture fluxes of greater than 600 W m−2 during RI. Peak values in Δq preferentially occurred over oceanic regimes with higher sea surface temperature (SST) and upper-ocean heat content. Thus, increasing SST and Δq is a very effective way to increase surface heat fluxes—this can easily be achieved as a TC moves over deeper warm oceanic regimes.

Full access
Lynn K. Shay
,
Arthur J. Mariano
,
S. Daniel Jacob
, and
Edward H. Ryan

Abstract

The three-dimensional hurricane-induced ocean response is determined from velocity and temperature profiles acquired in the western Gulf of Mexico between 14 and 19 September 1988 during the passage of Hurricane Gilbert. The asymmetric wind structure of Gilbert indicated a wind stress of 4.2 N m−2 at a radius of maximum winds (R max) of 60 km. Using observed temperature profiles and climatological temperature–salinity relationships, the background and storm-induced geostrophic currents (re: 750 m) were 0.1 m s−1 and 0.2 m s−1, respectively. A Loop Current warm core ring (LCWCR) was also located to the right of the storm track at 4–5 R max, where anticyclonically rotating near-surface and 100-m currents decreased from 0.9 m s−1 to 0.6 m s−1 at depth. The relative vorticity in the LCWCR was shifted below the local Coriolis parameter by about 6%.

In a storm-based coordinate system, alongtrack residual velocity profiles from 0 to 4 R max were fit to a dynamical model by least squares to isolate the near-inertial content over an e-folding timescale of four inertial periods (IP ≈ 30 h). Observed frequency shifts in the mixed layer currents ranged from 1.03 to 1.05f in agreement with both the backrotated velocity profiles at 1.04f relative to the storm profile (where maximum correlation coefficients were 0.8) and the predicted frequency shift from the mixed-layer Burger number. This frequency was increasingly blue shifted in the upper 100 m to 1.1f, decreasing toward f within the thermocline. Near-inertial currents rotated anticyclonically by 90°–180° in the upper ocean, providing the velocity shear for layer cooling and deepening observed on the right-hand side of the track. A summation of the first four baroclinic modes described up to 77% of this near-inertial current variability during the first 1.75 IP. However, the variance explained by this modal summation decreased to a minimum of 36% after 2.9 IP following passage due to phase separation between the first baroclinic mode and higher-order modes in the mixed layer. Although the response was complicated by the LCWCR, the evolving three-dimensional current structure can be described by linear, near-inertial wave dynamics.

Full access
Peter G. Black
,
Russell L. Elsberry
,
Lynn K. Shay
,
Ray P. Partridge
, and
Jeffrey D. Hawkins

Abstract

Three drifting buoys were successfully air-dropped ahead of Hurricane Josephine. This deployment resulted in detailed simultaneous measurements of surface wind speed, surface pressure and subsurface ocean temperature during and subsequent to storm passage. This represents the first time that such a self-consistent data set of surface conditions within a tropical cyclone has been collected. Subsequent NOAA research overflights of the buoys, as part of a hurricane planetary boundary-layer experiment, showed that aircraft wind speeds, extrapolated to the 20 m level, agreed to within ±2 m s−1, pressures agreed to within ±1 mb, and sea-surface temperatures agreed to within ±0.8°C of the buoy values. Ratios of buoy peak 1 min wind (sustained wind) to one-half h mean wind > 1.3 were found to coincide with eyewall and principal rainband features.

Buoy trajectories and subsurface temperature measurements revealed the existence of a series of mesoscale eddies in the subtropical front. Buoy data revealed storm-generated, inertia-gravity-wave motions superposed upon mean current fields, which reached a maximum surface speed > 1.2 m s−1 immediately following storm passage. A maximum mixed-layer-temperature decrease of 1.8°C was observed to the right of the storm path. A temperature increase of 3.5°C at 100 m and subsequent decrease of 4.8°C following storm passage indicated a combination of turbulent mixing, upwelling and horizontal advection processes.

Full access