Search Results

You are looking at 21 - 23 of 23 items for

  • Author or Editor: M. C. Wu x
  • Refine by Access: All Content x
Clear All Modify Search
Greg M. McFarquhar
,
Christopher S. Bretherton
,
Roger Marchand
,
Alain Protat
,
Paul J. DeMott
,
Simon P. Alexander
,
Greg C. Roberts
,
Cynthia H. Twohy
,
Darin Toohey
,
Steve Siems
,
Yi Huang
,
Robert Wood
,
Robert M. Rauber
,
Sonia Lasher-Trapp
,
Jorgen Jensen
,
Jeffrey L. Stith
,
Jay Mace
,
Junshik Um
,
Emma Järvinen
,
Martin Schnaiter
,
Andrew Gettelman
,
Kevin J. Sanchez
,
Christina S. McCluskey
,
Lynn M. Russell
,
Isabel L. McCoy
,
Rachel L. Atlas
,
Charles G. Bardeen
,
Kathryn A. Moore
,
Thomas C. J. Hill
,
Ruhi S. Humphries
,
Melita D. Keywood
,
Zoran Ristovski
,
Luke Cravigan
,
Robyn Schofield
,
Chris Fairall
,
Marc D. Mallet
,
Sonia M. Kreidenweis
,
Bryan Rainwater
,
John D’Alessandro
,
Yang Wang
,
Wei Wu
,
Georges Saliba
,
Ezra J. T. Levin
,
Saisai Ding
,
Francisco Lang
,
Son C. H. Truong
,
Cory Wolff
,
Julie Haggerty
,
Mike J. Harvey
,
Andrew R. Klekociuk
, and
Adrian McDonald

Abstract

Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation, and radiative processes, and their interactions. Projects between 2016 and 2018 used in situ probes, radar, lidar, and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN), and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF–NCAR G-V aircraft flying north–south gradients south of Tasmania, at Macquarie Island, and on the R/V Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multilayered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of dynamics and turbulence that likely drive heterogeneity of cloud phase. Satellite retrievals confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.

Full access
Bart Geerts
,
Scott E. Giangrande
,
Greg M. McFarquhar
,
Lulin Xue
,
Steven J. Abel
,
Jennifer M. Comstock
,
Susanne Crewell
,
Paul J. DeMott
,
Kerstin Ebell
,
Paul Field
,
Thomas C. J. Hill
,
Alexis Hunzinger
,
Michael P. Jensen
,
Karen L. Johnson
,
Timothy W. Juliano
,
Pavlos Kollias
,
Branko Kosovic
,
Christian Lackner
,
Ed Luke
,
Christof Lüpkes
,
Alyssa A. Matthews
,
Roel Neggers
,
Mikhail Ovchinnikov
,
Heath Powers
,
Matthew D. Shupe
,
Thomas Spengler
,
Benjamin E. Swanson
,
Michael Tjernström
,
Adam K. Theisen
,
Nathan A. Wales
,
Yonggang Wang
,
Manfred Wendisch
, and
Peng Wu

Abstract

One of the most intense air mass transformations on Earth happens when cold air flows from frozen surfaces to much warmer open water in cold-air outbreaks (CAOs), a process captured beautifully in satellite imagery. Despite the ubiquity of the CAO cloud regime over high-latitude oceans, we have a rather poor understanding of its properties, its role in energy and water cycles, and its treatment in weather and climate models. The Cold-Air Outbreaks in the Marine Boundary Layer Experiment (COMBLE) was conducted to better understand this regime and its representation in models. COMBLE aimed to examine the relations between surface fluxes, boundary layer structure, aerosol, cloud, and precipitation properties, and mesoscale circulations in marine CAOs. Processes affecting these properties largely fall in a range of scales where boundary layer processes, convection, and precipitation are tightly coupled, which makes accurate representation of the CAO cloud regime in numerical weather prediction and global climate models most challenging. COMBLE deployed an Atmospheric Radiation Measurement Mobile Facility at a coastal site in northern Scandinavia (69°N), with additional instruments on Bear Island (75°N), from December 2019 to May 2020. CAO conditions were experienced 19% (21%) of the time at the main site (on Bear Island). A comprehensive suite of continuous in situ and remote sensing observations of atmospheric conditions, clouds, precipitation, and aerosol were collected. Because of the clouds’ well-defined origin, their shallow depth, and the broad range of observed temperature and aerosol concentrations, the COMBLE dataset provides a powerful modeling testbed for improving the representation of mixed-phase cloud processes in large-eddy simulations and large-scale models.

Full access
Guy P. Brasseur
,
Mohan Gupta
,
Bruce E. Anderson
,
Sathya Balasubramanian
,
Steven Barrett
,
David Duda
,
Gregg Fleming
,
Piers M. Forster
,
Jan Fuglestvedt
,
Andrew Gettelman
,
Rangasayi N. Halthore
,
S. Daniel Jacob
,
Mark Z. Jacobson
,
Arezoo Khodayari
,
Kuo-Nan Liou
,
Marianne T. Lund
,
Richard C. Miake-Lye
,
Patrick Minnis
,
Seth Olsen
,
Joyce E. Penner
,
Ronald Prinn
,
Ulrich Schumann
,
Henry B. Selkirk
,
Andrei Sokolov
,
Nadine Unger
,
Philip Wolfe
,
Hsi-Wu Wong
,
Donald W. Wuebbles
,
Bingqi Yi
,
Ping Yang
, and
Cheng Zhou

Abstract

Under the Federal Aviation Administration’s (FAA) Aviation Climate Change Research Initiative (ACCRI), non-CO2 climatic impacts of commercial aviation are assessed for current (2006) and for future (2050) baseline and mitigation scenarios. The effects of the non-CO2 aircraft emissions are examined using a number of advanced climate and atmospheric chemistry transport models. Radiative forcing (RF) estimates for individual forcing effects are provided as a range for comparison against those published in the literature. Preliminary results for selected RF components for 2050 scenarios indicate that a 2% increase in fuel efficiency and a decrease in NOx emissions due to advanced aircraft technologies and operational procedures, as well as the introduction of renewable alternative fuels, will significantly decrease future aviation climate impacts. In particular, the use of renewable fuels will further decrease RF associated with sulfate aerosol and black carbon. While this focused ACCRI program effort has yielded significant new knowledge, fundamental uncertainties remain in our understanding of aviation climate impacts. These include several chemical and physical processes associated with NOx–O3–CH4 interactions and the formation of aviation-produced contrails and the effects of aviation soot aerosols on cirrus clouds as well as on deriving a measure of change in temperature from RF for aviation non-CO2 climate impacts—an important metric that informs decision-making.

Full access